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ABSTRACT

As medical imaging facilities move towards film-less imag-
ing technology, robust image compression systems are start-
ing to play a key role. Conventional storage and transmission
of large-scale raw medical image datasets can be very expen-
sive and time-consuming. Recently, we proposed a memory-
assisted lossless image compression algorithm based on Prin-
cipal Component Analysis(PCA). In this paper, we further
improve the performance of the algorithm in two different di-
rections: Firstly, we replace PCA with NMF (Non Negative
Matrix Factorization). NMF has several advantages in rep-
resenting images with an image-like basis, results in sparse
factors, and provides better user control over iterations. Sec-
ondly, we expand the single-level model with a new multi-
level decomposition/projection framework to further reduce
entropy of residual images. Our experimental results on X-
ray images confirm that both modifications provide signifi-
cant improvements over the single level PCA based algorithm
as well as existing non-memory based techniques.

Index Terms— Lossless Compression, Medical Imaging,
Non-negative Matrix Factorization, Unsupervised Learning.

1. INTRODUCTION

Every day, a huge volume of digital images is produced by
medical applications such as telemedicine and tele-radiology.
There are many challenges associated with the storage, re-
trieval and transmission of this amount of data due to the prac-
tical limitations in communication bandwidth and constraints
on time and space. To tackle these issues, many compression
techniques have been proposed [1]. These techniques aim
at effectively reducing the cost of storage and enhancing the
speed of transmission. Since lossy compression techniques
may adversely affect the accuracy of diagnosis systems, ro-
bust lossless compression algorithms are highly sought in dif-
ferent medical imaging applications [2].

Most of the literature on medical image compression
focuses on reducing redundancy within a single image [3].
In contrary, only a limited body of research considered the
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possibility of extracting commonalities (similarities and cor-
relation) among a set of images [4]. Indeed, some studies
have shown that extracting cross-image redundancy can sig-
nificantly improve performance of traditional lossless com-
pression techniques [5].

The compression algorithms that exploit correlation
within a set of similar images can be categorized into two
categories: Set Redundancy Compression (SRC) algorithms
and Memory-Assisted Compression (MAC) techniques. The
main difference between these categories is that SRC algo-
rithms extract “interimage redundancy” [6] from a set of
images, then compress the residues from the same set of im-
ages. MAC techniques, in contrast, learn the common pattern
(a.k.a. prototype or model images) from the training set, then
use these to compress unseen images from the testing set.
Therefore, the ability to memorize the commonalities and
exploit these to compress unseen images is a unique feature
of MAC techniques [3].

In this paper, we extend our previous MAC framework [3]
by improving its template extraction algorithm and adding an
extra learning level. More specifically, our main contributions
in this paper are as follows: Firstly, we substitute Principal
Component Analysis (PCA) by Non-negative Matrix Factor-
ization (NMF). Although there are more constraints on NMF,
the algorithm captures better the similarities and hence en-
hances compression rate. Secondly, we extend our previous
MAC framework to a multilevel framework. With the expense
of a linear increase in computational complexity, the mul-
tilevel framework outperforms substantially its single level
counterpart. Finally, we study the sensitivity of the proposed
technique to the sizes of the training and testing datasets.

The rest of the paper is organized as follows. Section 2
introduces the basis extraction algorithm using NMF. Sec-
tion 3 discusses the proposed multilevel framework. Then,
Section 4 discusses our experimental results. Finally, Sec-
tion 5 draws some concluding remarks.

2. LEARNING SIMILARITIES USING NMF

In our previous MAC framework [3], we used a simple Prin-
cipal Component Analysis (PCA) algorithm [7] for determin-
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ing the projection basis. Technically, PCA transforms the
data from the original coordinate system into a new one such
that the first coordinate (a.k.a. first component) contains the
largest variance of the data, the second coordinate contains
the second highest variation, etc.... [7]

Despite its simplicity and effectiveness, PCA application
is sometimes limited by a number of assumptions, including
the linearity in the combination of basis vectors, importance
of directions with the largest variance, and orthogonality of
principal components. In addition, the eigenvalue decompo-
sition of the covariance (or correlation) matrix for large size
datasets (specially with large size images) is usually a tedious
task. Moreover, the performance of the decomposition may
drop when the images are noisy or sparse (as is in different
biomedical imaging modalities).

To lessen some of the aforementioned difficulties, we pro-
pose a new MAC framework in which Non-negative Matrix
Factorization (NMF) [4] is used for the template extraction
phase. Technically, NMF is an unsupervised dimensional-
ity reduction technique which identifies a set of non-negative
components of an object and converts a data matrix into the
product of two smaller matrices. A bold advantage of NMF
over PCA is that it can be simply implemented using iterative
algorithms. This means a balance (or a compromise) between
accuracy of the approximation and speed of the algorithm can
easily be achieved. Another advantage that makes NMF more
applicable to our scenarios is the fact that NMF can be seen
as parts based representation. Unlike PCA, LDA, and ICA,
NMF representation is based on a positive-based combina-
tion of the basis images which can be seen as “true” template
images.

In its simplest form, NMF works as follows: Assuming
that an image database is represented by matrix V,, x,,, Where
each column is a vectorised image containing n non-negative
elements (i.e., pixel values), and m is the number of images
in the set. NMF factorizes V into two matrices W, and
H, ., where r is usually smaller than both n and m. More
formally:

Vi~ (WH); = Y Wi Hy;, subjectto W, H >0 (1)
k=1

where the columns of W are the basis images of size n, and
each column of H is a coefficient vector representing one of
the m images.

To calculate the basis and coefficient matrices, both W
and H are traditionally initialized by random positive num-
bers. Then, their elements are iteratively fine-tuned according
to the following assignments:

(VHT);
W; Wik 2
K Wi (VHHT);, 2
(WTV)y,
Hey = B yrwm),, ®
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Note that any column of W can serve as a basis image.
In this study, we only use the first column as the template im-
age reflecting the similarities of all images in the training set.
Actually, similarly to PCA and LDA, the energy contained in
the first basis image represents a large percent of the total en-
ergy. Assuming that the images of training and testing sets
are strongly similar,as Figures 1.a and 1.b, we expect that
this first basis image can also capture most of the redundancy
in the testing set (see Figures 1.e and 1.f). The next section
describes how this extracted redundancy can be used with the
proposed multilevel image compression framework.

3. MULTILEVEL MEMORY-ASSISTED
COMPRESSION

This section discusses the new framework which introduces
the concept of multilevel feature extraction to the MAC
framework. Before explaining the details of the proposed
multilevel framework, let us briefly review the existing (i.e.,
single-level) MAC algorithm, originally proposed in [3].

In a basic sender/receiver scenario, we assume that a set of
“similar”images 7 = {T1, T2, T3,---, Ty} is available at
the sender side. This set of images can be used as the training
set. The similarities within the training set are captured using
an eigenvalue eigenvector decomposition of the estimated co-
variance matrix. Either the eigen-images of PCA (see [3]) or
basis images of NMF (see Section 2) can be used to represent
the whole training datasets.

Before any compression, the reconstructed image from
PCA or NMF is subtracted from the images that need to be
compressed (so-called testing images). More formally:

R,=1,-M (4)

where R;, I; and M are the i-th residue image, the i-th im-
age to be compressed, and the reconstructed template image,
respectively. Now, the sender compresses the residue R; (in-
stead of the original image I;), using any arbitrary lossless
compression tool. Then, it sends the compressed residue I{i
to the receiver. At the other side, the receiver needs to decom-
press each Ri to retrieve corresponding R;, using the same
lossless algorithm. Then, the template image M is added to
each R; to reconstruct all the original images I;’s. Clearly,
the more images to compress, the higher the improvement this
method can achieve.

The main steps of multilevel MAC framework are very
similar to the components of the single-level MAC frame-
work. The key difference between these two models is that
under the multilevel framework, the residue images from the
previous levels are treated as the next level “‘original” im-
ages. In other words, assume that MO is the reconstructed
image learned from 7 (similar to M in single-level MAC).
This means V in Eq. (1) should be constructed based on 7.
Then, the first set of residue images is defined as follows:

R =1,-M° (5)
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At every level, the basis i 1mage MY (V5 > 0) is obtained
from RV = {R],R: ‘ 7l }, which is simply the set of
all residue images computed at that level. This means for
the calculation of M7, the R? should be used to form V in
Eq. (1). The residue images at the j-th level (5 > 0) can
simply be computed as:

R]=R;""-M/'! (6)

In the multilevel MAC framework, the sender only com-
press the residue images from the last level (i.e., RY). Then,
it sends the compressed residues along with all template im-
ages (i.e., Mi7s). Figure 2 illustrates the different steps of the
proposed multilevel MAC framework.

Note that adding any extra level yields to two contradict-
ing objectives: On one hand, each extra level reduces the en-
ergy of the last residue images and improves the compres-
sion ratio. On the other hand, each level produces one more
template image which should be transferred (once per set).
Consequently, to achieve the best result, the number of levels
should be carefully chosen. In brief, the proposed NMF-based
multilevel MAC encoder works as follows:

1. Learn similarities across a set of train images 7 by ap-
plying NMF. Store the resulting template into MO (see

Section 2).

2. Get the input test image set Z = {I;,I,1Is,--- Iz }.

3. Obtain residue-set R! by subtracting M' from Z (see
Eq. (5)).

4. Apply NMF on the residue-set from the previous level
(R?~1) to obtain M7,

5. Calculate R’ according to Eq. (6).

6. Repeat step 4 and 5 until final residue-set (R') is com-
puted. Then go to the next step.

7. Store M = {M! M2 M3, ... M'}.

8. Apply any lossless compression algorithm on R! to obtain
R.

In order to reconstruct the original image set (Z), the fol-
lowing steps must be taken:

1. Apply a decompression algorithm, which matches the
compression technique that is applied in step (8), on R to
obtain R!.

2. Add MY to each image of R7 to yield R7~1.

3. Repeat step 2 until R' is calculated. Then go to the next
step.

4. Add M to each image of R! to obtain Z.

4. EXPERIMENTS

This section outlines our experimental setup and datasets
used. It also presents our initial results and discusses the
findings.
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Fig. 1: Random sample X-ray images (a,b), PCA-driven tem-
plate images (c,d) and NMF-driven (e,f) template images.

| 4 7 / Memorized Image(M®)

/I” ..... 43 >.>i

Gy %

l
Il, Iz, ol

Tram Set (M) |

Levell A‘ A A A i
Residual set= R},RZ, R

Test set

. y i

Residual set={R}, R}, ...,R Residual set = {R%, B2, ..., R%}

Levell

—>| Lossless Compression Module |——> Compressed Residues

Residual set = {R%, R, ..., RY}

Fig. 2: The proposed Multilevel memory-assisted compres-
sion algorithm.
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4.1. Experiment Setup

As mentioned briefly in Section 1, this paper targets three
main goals. Firstly, we wanted to extend our PCA-based work
to NMF. Secondly, we further wanted to enhance the single-
level MAC framework to a multilevel approach. Finally, we
wanted to study the effect of the training and testing sets sizes
on the performance of the algorithms.

In order to achieve all aforementioned goals, we exam-
ined the performance of single and multilevel PCA-based
and NMF-based MAC methods. We also included the well-
known Context Tree Weighting (CTW) [8] technique as the
non-memory-assisted baseline. Since the superiority of MAC
technique over traditional lossless compression algorithms
has been shown in [3], there was no need to compare the new
MAC framework to the traditional methods. Note that in all
MAC techniques, the same implementation of CTW is used
to provide a fair comparison. Because of space limitation, the
comparison between MAC algorithms with different lossless
encoders is left for the future studies.

To study the sensitivity of the algorithms to the training
and testing dataset sizes, three different sizes (i.e., 5, 10, 15)
were examined for both training and testing sets. Therefore,
each method is run nine times, in total. Note that for all cases,
training and testing sets are completely exclusive.

In this study, all the experiments were carried out on the
lung images from the famous Japanese Society of Radiolog-
ical Technology dataset [9]. All raw images were of size
2048 x 2048 pixels, encoded in 8-bit gray-scale format. Fig-
ures 1.a and 1.b display two randomly chosen samples from
the dataset. In future work, we plan to include additional med-
ical image datasets.

4.2. Experiment Results and Discussion

Figure 3 illustrates the histograms of the residue images of a
randomly selected X-ray image. The residues in figures 3.a
and 3.b are computed using PCA, whilst figures 3.c and 3.d
are produced using NMF-driven templates. A comparison be-
tween the histograms reveals that both modifications (NMF
and multilevel) narrow the distribution of pixel values and in-
crease the number of pixels with zero value. Furthermore,
table 1 shows that the entropies of raw image, and image after
PCA and NMF reconstruction with different levels. The table
demonstrates a decreasing entropy trend of raw image after
decorrelation by PCA, NMF for different levels. It can be
clearly seen that the entropy of raw image is substantially de-
creased by NMF compared to PCA. This means the resulting
residue images can be compressed much more efficiently.
The experimental results of all algorithms with nine dif-
ferent training/testing set sizes are depicted in Figure 4. The
bar charts compare the algorithms according to the com-
pression ratio improvements over the memory-less CTW [8].
Each sub-figure depicts the relative improvement of the algo-
rithms when applied on a fixed number of training images.
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Fig. 3: Histograms of residue images of a randomly chosen
X-ray image. Template images are computed either by single-
level/two-level PCA (a,b) or by single-level/two-level NMF-
based template extraction (c,d).

In contrast, different groups of bars within a sub-figure show
the performance of the algorithms when the number of test
images varies. Note that in all figures, larger values for
compression ratio improvement indicate better performance.

Table 1: Entropy Results

Entropy PCA NMF
Raw image 6.7569  6.7569
M! 6.2984 7.1897
M2 6.1086 6.2888

R! 6.1118 5.0064

R2 5.6630 5.0050

As Figure 4 confirms, all variants of MAC framework
improve the no-memory-assisted baseline with at least 39%.
Among all the variations, single-level PCA and multi-layer
NMF (i.e., NMF 2) demonstrate the least and the most
improvements, respectively. Indeed, the best performance
among all variations is the multi-layer NMF-based algorithm
with 15 train and 15 test images (62.25% improvement).

By comparing NMF variations with similar PCA ones, we
see that NMF-based algorithms are the preferred algorithms.
On the other hand, comparison between single and two-level
methods reveals that the multi-level learning significantly im-
proves its single-level parent.

Another observation worth mentioning here is the fact that
is when the number of training images is fixed, any increment
in the number of testing images results in better improvement
without any exception. This effect is more visible when the
number of training images is moderate (see figure 4.b). For
small and large training sets (e.g..figures 4.a and 4.c), the ef-
fect of testing set size is superficial. In general, growth in
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Fig. 4: Comparing PCA, NMF, two-level PCA, and two-level NMF MACs to CTW.

the size of training set enhances compression ratio. How-
ever, there is one exception; Comparing PCA-based methods
(both one and two-level) in Sub-figures 4.a and 4.b shows
that when the number of images in testing set is not large
enough, increasing the number of training samples from 5
to 10 has an adverse effect on the compression ratio. This
phenomenon is unique to PCA-based MAC and is not seen
in NMF-based techniques. Comparing figure 4.b with figure
4.c confirms that this surprising phenomenon is just an ex-
ception and does not occur again when the number of training
samples increases from 10 to 15 images.

5. CONCLUSION

In this study, we improved our previously developed memory-
assisted lossless compression algorithm by using a more rele-
vant application-inspired template extractor and by increasing
the levels of set similarity learning. Our experimental results
on the JRST medical images confirm that both modifications
successfully improve the compression ratio. Furthermore,
we showed that larger training and testing sets enhance the
performance of all variants of memory-assisted techniques.
Since the proposed framework and its parent are still very
recent, more future work can be carried to study and enhance
these algorithms. For example, we are interested to find a
rule-of-thumb for choosing the number of learning levels.
We also aim at investigating the effect of different lossless
encoders (e.g., CALIC and JPEG-LS) on the performance of
the proposed techniques. Finally, we plan to include more
medical image datasets to draw stronger conclusions.
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