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ABSTRACT 
 
In a sparse component analysis problem, under some non-
strict conditions on sparsity of the sources, called k-SCA, 
we are able to estimate both mixing system (࡭) and sparse 
sources (ࡿ) uniquely. Based on k-SCA assumptions, if each 
column of source matrix has at most ܰx −1 nonzero com-
ponent, where ܰx is the number of sensors, observed signal 
lies on a hyperplane spanned by active columns of the mix-
ing matrix. Here, we propose an efficient algorithm to re-
cover the mixing matrix under k-SCA assumptions. Com-
pared to the current approaches, the proposed method has 
advantages in two aspects. It is able to reject the outliers 
within subspace estimation process also detect the number 
of existing subspaces automatically. Furthermore, to accel-
erate the process, we integrate the "subspaces clustering" 
and "channel clustering" stages in an online scenario to es-
timate the mixing matrix columns as the mixture vectors 
are received sequentially. 
 

Index Terms— Underdetermined Blind Identification, 
Sparse Component Analysis (SCA), k-SCA and Subspace 
Clustering  
 

1. INTRODUCTION 
 
Blind Source Separation (BSS) on an instantaneous linear 
mixing system could be formulated as follows 

܆  =  .(1)       ܁ۯ

Where ܆ = ,(0)ܠ] … , ܶ)ܠ − 1)] ∈  ܴேೣ×் includes the 
mixture data at all-time instants (ݐ = 0, … ,ܶ − ۯ ,(1 =
,ଵ܉] … [ேೞ܉. ∈ ࢙ࡺ×࢞ࡺܴ    is unknown full-column rank mix-
ing matrix and ܁ = ,(0)ܛ] … , T)ܛ − 1)] ∈  ܴேೞ×் includes 
unknown underlying source signals in different time in-
stants (ܰs and ܰx are the number of sources and sensors 
respectively). The problem of BSS consists of decompos-
ing data set ܆ into ۯ and ܁ such that we have a priori 
knowledge about [1] ܁. Basically, a BSS problem is a two 
- stage procedure. The first stage consists of identifying the 
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mixing matrix and the second stage is recovering the source 
signals. In this paper, we focus on the identification step. 

In 2005 Georgiev et al [2, 3] proposed k-sparse com-
ponent analysis (k-SCA) algorithm to solve the Underde-
termined BSS (UBSS) that assumes the source signals are 
(ܰx +1) sparse i.e. there are at most (ܰx −1) active 
sources in each time instant. Indeed, UBSS problems are 
solvable as long as the number of mixture is greater than 
the number of active sources in each time instant. During 
these years, many UBSS algorithms have been proposed 
based on k-SCA assumptions in the literature. Most of these 
methods take advantage of subspace clustering approach. 
Actually, the observed signals are clustered to ܯ clusters, 
where ܯ is the maximum number of possible subspaces, in 
order to estimate the mixing matrix.  

Georgiev et al applied a two-layer clustering approach 
to estimate ۯ. As the first step, the columns of ܆ are clus-
tered in ܥேೞ 

ேೣିଵ groups such that the span of the components 
of each cluster generates different ௫ܰ − 1  dimensional 
subspaces. At second stage, a similar manner is applied to 
the normal vectors of each subspace. Actually, they are 
clustered in ௦ܰ groups such that each normal vector to the 
subspaces lies on the subspaces of normal vectors. Finally, 
the normal vectors of different subspaces are estimations of 
the mixing matrix columns (up to permutation and scaling). 
They proposed an algorithm called “subspace clustering” 
to put into practice their theory based on a minimization 
framework [3]. 

 In 2009 Zhaoshui He et al [4, 5] proposed a novel ap-
proach to implement Georgiev’s theory called “k-hyper-
plane learning clustering (k-HLC)” based on a new com-
plex space distance combined with the k-Eigenvalue de-
composition (k-EVD) process. Moreover, k-HLC is able to 
detect the number of hyperplanes. 

In 2010, Wen Yang et al [6] suggested a novel anti-
noise approach by definition of  hyperplane membership 
functions to estimate more accurate mixing matrix. Re-
cently, Jiechang Wen et al [7] have proposed an extension 
of the normal vector clustering prototype that is combined 
with a new fuzzy k-EVD based algorithm.  The authors of 
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the work presented in [8], in order to find the normal vec-
tors of the subspaces, suggested a new simple algorithm 
which tries to find all ܰݔ − 1  linearly independent column 
vectors of ܆. Then, they cluster the normal vectors of 
achieved column vectors which span different subspaces. 
Yoshikazu Washizawa et al [9] introduced an online adap-
tive clustering that is capable of learning individual  hyper-
plane. 

In 2007, Theis et al [10, 11] implemented a robust SCA 
algorithm based on generalized Hough transform. Alt-
hough their approach takes advantage of the different con-
cept compared to other works in the literature but the angu-
lar resolution limits the accuracy of the mixing matrix.   

In this paper, we propose a new approach to implement 
Georgiev’s theory and detect the number of hidden sub-
spaces using a subspace selective search based algorithm. 
Most of the subspace clustering based methods might not 
converge to accurate estimations due to outliers. Here, out-
liers are defined as the measurement vectors with more than 
ݔܰ − 1 active columns or the vectors that are not belonged 
to the span of ۯ.  

The proposed method is able to reject the outliers by 
applying a novel selective algorithm in order to achieve ac-
curate estimation of mixing matrix. Furthermore, here an 
online approach is considered in contrast to the two–fold 
offline methods in the literature. Here, as the first step, we 
discuss the basic k-SCA concept in Section 2. Our online 
selective approach to identify mixing matrix ۯ and its clus-
tering prototype is presented in Section 3. Simulation ex-
amples are described in Section 4. The conclusions and dis-
cussion are provided in Section 5. 

 
2. K- SCA PROBLEM FORMULATION 

 
Based on Eq.1, the adopted version of instantaneous mixing 
system under k-SCA assumption, in a vector-wise scheme, 
can be formulated as follows 

(࢚)ܠ =  ∑ ࢑࢐܉
ୀ૚࢐  .(2)         (࢚)࢐ܛ

Based on new formulation, observed signals in moment ݐ is 
built by combination of ݇ weighted version columns of ۯ,  
where ݇ is the number of active sources in each time in-
stant.  

The k-SCA assumptions are listed as follows[2]. 
A1. Each square ܰݔ  .submatrix of A is nonsingular ݔܰ ×
A2. Source matrix S has at most ܰݔ − 1 active (nonzero) 
source at each column. 
A3. Source matrix is able to excite the all possible sub-
spaces sufficiently. Actually, it has at least  ܰݔ columns 
such that each of them has inactive sources in same places 
and ܰݔ − 1 of them are linearly independent. 

Based on Georgiev’s proof, as long as ݇ <  ௫ܰ, Eq. 1 
has a unique solution. Let’s assume ݇=ܰ1-ݔ, according to 
Eq. 2 and based on ݇-SCA assumptions two concept are 
elicited as follows. First, each subspace ۶௜ is spanned by ݇ 
columns of A and every ݇ columns of X are linear inde-
pendent i.e.:  

࢏۶ = ,૚܉}࢔ࢇ࢖ࡿ …  .(3)     {࢑܉,

Consequently, all number of possible subspaces is known 
as ݏܰܥ

݇ . Second, ݆ th column of ۯ (i.e. ݆܉) lies in the intersec-
tion of  1−ݏܰܥ

݇−1  subspaces, produced by those columns of ۯ, 
which  involve ݆܉.  
 

3. METHOD 
 
The standard Underdetermined Blind Identification (UBI) 
problem under ݇-SCA assumptions could be tackled by two 
below steps [2]. 

1. Find the normal vectors of hidden subspaces ݅࢝ ∈
ݔܴܰ  when the active source in each moment is at 
most  ݇ = ௫ܰ − 1. 

2. Estimate the normal vectors ܉ොܾ (ܾ = 1, …  of (ݏܰ,
each subspace, where ۯො  with columns of ܉ොܾ is an 
estimation of ۯ. 

Different clustering methods with different perfor-
mances are developed to be employed in Step 2 [2-7, 9-11]. 
One of the most challenging problems in this step is due to 
existing outliers data involved in different clusters. Here, in 
order to promote the performance of the process listed on 
Step 2, we have developed a selective algorithm which will 
be explored in the next subsections. 

 
3.1 Subspace Selective Search  

 
The performance of many algorithms mentioned in Section 
1 might not be desirable due to the outliers. Hence, here a 
selective algorithm has adopted to reject the outliers. One 
of the ways to find the subspaces is finding and clustering 
the normal vectors of them. In this regard, it is proper to 
perform Eigen-value decomposition (EVD), in analogy 
with k-EVD [5]  and k-HLC [4] frameworks, to find the 
normal vectors as eigenvector corresponding the smallest 
Eigen-value. The key difference between our algorithm and 
other methods in the literature is that the proposed method 
performs a selective search to choose the proper subspaces. 

In addition, the number of sources could be unknown 
in some practical applications. Hence, it will be impossible 
to determine the number of the hidden subspaces. Most ex-
isting methods assume that the number of subspaces is 
computable. Few of them, such as the method proposed by 
Zhaoshui He et  al [4] assume that this number is unknown. 
They tackle this problem by overestimating the number of 
the subspaces which makes their performance dependent to 
overestimating ratio. In contrast, our proposed framework 
is capable of measuring the number of existing subspaces 
with no overestimating scheme. 

Subspace selective search (so called S3) tries to com-
pute altered versions of normal vectors of each subspace 
then compute the ultimate normal vector in a selective sce-
nario summarized in Algorithm 1. Here, we describe the S3 

procedure for current selected  ௫ܰ vectors that are chosen 
randomly. Note that if the selection criterion (in Step 2 of 
Algorithm 1) is satisfied, S3 finds a proper subspace and its 
normal vector (as its representative). In the cases with some 
vectors of different subspaces the output is null (showing 
that the input vectors do not lie on one subspace). We need 
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to operate S3 several times on the randomly selected vectors 
of  ܆ which will be explained in section 3.4. 

 
Algorithm 1 Subspace Selective Search( S3)  
Task: Selective searching for identifying the proper subspaces. 
Initialization: ܶℎଵ , a threshold for selection. 
Input:܆,෩  a ௫ܰ × ௫ܰ submatrix from X.    
Output: ܟ: The candidate for the normal vectors of subspaces or null. 
Step 1: Build ࡾ =  .௜ߣ .෩்  and obtain its Eigenvalues i.eࢄ෩ ܆
Step 2: ݂݅ |ఒభౣ౟౤|

|ఒౣ౗౮|
 <  ܶℎଵ then ← ேೣߣ ଵandߣ ଵ  , whereܞ  are the smallest and 

largest Eigenvalues respectively and ܞଵ   is the eigenvector that correspond 
to ߣଵ. 
Step 3: else ܟ ←  .݈݈ݑ݊

 
3.2 Bidding - based Clustering Algorithm 

In the noise free cases, selective method to find the sub-
spaces (Algorithm 1) detects all ( ܥேೞ

௞ ) subspaces without 
any prior information about the number of subspaces. With 
this scenario, each subspace and its normal vector will be 
turned up many times. Therefore, an online clustering algo-
rithm (with unknown number of clusters) is needed to clus-
ter the different achieved normal vectors related to different 
subspaces. By using this strategy, both subspace selection 
and clustering could be performed simultaneously. To this 
aim, we adopt a bidding process that tries to decide in as-
signing any input normal vector to the one of existing cen-
troids or producing a new cluster from it. In this process, 
we consider the compactness of each cluster members com-
bined with most discrimination among the different clusters 
using the absolute cosine distance (ACD). This distance is 
defined between two vectors (e.g. for ࢏ܠ and ࢐ܠ) as follows 

௜௝ܦܥܣ = 1− ߠݏ݋ܿ ݁ݎℎ݁ݓ    |ߠݏ݋ܿ| =
ೕܠ೔೅ܠ

ೕฮܠ೔‖ฮܠ‖
               (4). 

Algorithm 2 Bidding based- Clustering Algorithm (BBC) 
Task: Online Generation Clustering.    
Initialization: ܶℎଶ, a threshold for compactness. 
Input: ܟ௜: the candidates.  
Output: ۱: the updated centroids. 
Step 1: ∀ ܋௝ ∈ ,1)ܥ … , ௜௝ܦܥܣ ௜௝ whereܦܥܣ ௜=minܦ find  (ܬ = 1 −

ฬ ೔ܟ
೅܋ౠ

ೕฮ܋ฮ‖ܑܟ‖
ฬ is the bid distance and ܟ௜ ← )݊݃݅ݏ ೔ܟ

೅܋ೕ
ೕฮ܋౟‖ฮܟ‖

 .௜ܟ(

Step 2: ݂݅ ∃ ܋௟ ∈ ۱  such that ܦ௜ <  ܶℎଶ then allocate ܟ௜ to ܋௝ as closest 
Step 3: Else allocate ܟ௜ as a new cluster (i.e.܋௃ାଵ ←  .(௜ܟ

 
3.3 Channel Selective Search 
 
In order to detect the subspaces and channels (the columns 
of mixing matrix) simultaneously, we need a channel esti-
mation process after detecting the subspaces. As mentioned 
before, the most subspace-based methods find the normal 
vectors of the known number ( ݏܰܥ

݇ ) of subspaces in their 
first step. Then, the channels are identified based on a sim-
ilar process separately. In fact, (1−ݏܰܥ

݇−1 ) subspaces are inter-
sected by a column of ۯ where ݇ is the number of active 
source in each moment. Let us assume ܰ ݔ = 3 and ௦ܰ = 5, 
implying there shall be 5ܥ

2 = 10 subspaces (݇ = ௫ܰ − 1 =
2) that could be represented by their normal vectors. There-
fore, we need all (1−5ܥ

2−1 = 4) subspaces to find each chan-
nel that it is orthogonal to all 4 normal vectors. 

Algorithm 3, named channel selective search (so called 
CS2) illustrates our scheme for online channel estimation. 
CS2 is in fact equivalent to the third step in the subspace 
based ݇- SCA algorithm that was mentioned in the begin-
ning of section 3. However, we propose a novel method of 
channel identification whose structure is different from the 
existing subspace-based algorithms. 
 We shall consider that we could proceed to estimate a 
channel with as little as  ௫ܰ detected subspaces. We shall 
locate these ௫ܰ   vectors to make a matrix ۱෨௝ ∈  ܴேೣ×ேೣ . In 
fact, CS2 implements, in analogy with Algorithm 1, a selec-
tive algorithm to disentangle the desired orthogonal vectors 
from undesired ones. Here, the major difference with Algo-
rithm1 is that the proposed algorithm rejects the few degen-
erative solutions which might be achieved by finding the 
eigenvector corresponding to the smallest Eigen-value of 
the covariance matrix of ۱෨௝only. Generally, degenerative 
solutions are the results of having more than one Eigenval-
ues very close to zero. To mitigate this problem we could 
reject cases with the second smallest Eigenvalues very 
close to zero. Nevertheless, still some spurious vectors 
might be detected. These spurious solutions could be en-
countered when we have one or more sub-matrices ۱෠௜ ∈
 ܴேೣ×ேೣିଵ in ۱෨௝ with more than one zero (or very close to 
zero) Eigenvalues. We address these issues by finding the 
applying the selective procedure to all sub-matrices ۱෠௜ ∈
 ܴேೣ×ேೣିଵ in ۱෨௝ . More details in this regards are given in 
Algorithm 3. 
 

Algorithm 3  Channel Selective Search (CS2) 
Task: Channel Identification. 
Initiations: ܶℎଷ ← selection threshold. 
Input: ۱ ← the updated centroids for clustered normal vectors of sub-
spaces. 
Output: ܟෝ ← the channel candidate. 
Step 1: ∀ ۱෨௝ ∈  ܴேೣ×ேೣ  from sub-matrices of ۱ ∈  ܴேೣ×ே where  
݆ ← ேܥ  ݋ݐ 1

ேೣ.  
Step 2: Build ૉ௝ = ۱෨௝۱෨௝

்   if  |ఒభ|
หఒಿೣห

 <  ܶℎଷ and |ఒమ|
หఒಿೣห

 >  10଼ × ܶℎଷ then ܞ ←

ேೣߣ ଵ andߣ ଵ  go to step 3 else go to step 1, whereܞ  are the smallest and 
largest Eigenvalues of ૉ௝  respectively and ܞଵ   is the Eigenvector that cor-
respond to ߣଵ . 
Step 3: Calculate ݀ଵ =  .(۱෨௝ห்ܞห)ݔܽ݉)ݔܽ݉
Step 4: ∀ ۱෠௜ ∈  ܴேೣ×ேೣିଵ  from submatrices of ۱෨௝ ∈  ܴேೣ×ேೣ  where  
݅ = ேೣܥ  ݋ݐ 1

ேೣିଵ.  
Step 5: Build ૉෝ௜=۱෠௜۱෠ܑ

் and calculate ܞො ←  ොଵthe Eigenvector thatܞ ොଵ  whereܞ
correspond to the smallest Eigen-value of is ૉෝ௜. 
Step 6: Calculate ݀௜ାଵ =  .(ො்۱෠௜หܞห)ݔܽ݉)ݔܽ݉
Step 7: If max (݀)< ܶℎଷ then  ܟෝ ←  .ଵ else go to step 1ܞ

 
3.4 Online Continuous Selective Channel Identifica-

tion 
 
In this subsection, we describe our proposed algorithm 
named online continuous selective channel identification 
(OCS-CI). By continuous term, we meant developing an al-
gorithm that is capable of performing all k-SCA stages sim-
ultaneously. Moreover, our online framework could pro-
ceed to identify the columns of ۯ gradually. The OCS-CI 
benefits from selective algorithms (S3 and CS2) in order to 
enhance the accuracy of channel estimation. In this regard, 
we repeatedly choose the ܰݔ ×  submatrices from the ݔܰ
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mixed data, in a random way, and accept the generated sub-
spaces based on criteria introduced in S3 algorithm.  

To further accelerate the convergence of OCS-CI, we 
cluster the received mixture vectors using an online and un-
supervised clustering methods such as fuzzy ART[12, 13].  
Moreover, in order to avoid having local search problem 
we try to choose subspace candidate vectors from more 
than one clusters, generated by online-clustering process, 
randomly. In Algorithm 4, these randomly selected vectors 
are stacked up in a matrix called (݈݁ݏ܆).  
 A summary of our proposed algorithm is shown by Al-
gorithm 4 (as OCS-CI). As a short description, in the first 
step we suppress all columns that are close to the origin. 
Then each column is normalized in order to scaling data to 
a known range. We next select ܰݔ vectors randomly and 
apply Algorithm 1 (S3). The output of previous step would 
be the normal vector candidate for the detected subspace if 
there exists . Due to our observation that these normal vec-
tors are detected many times, we then apply a strict online 
clustering layout based on a bidding distance (Algorithm 
2). The output would be updated centroids corresponding 
to the normal vectors. Finally, we perform our channel es-
timation algorithm (CS2) using only ܰݔ subspaces instead 
of all (1−ݏܰܥ

݇−1 ) subspaces. To cluster the channel candidates 
the BBC procedure is developed similar to the subspaces 
clustering algorithm.  
 

Algorithm4  Online Continuous Selective Channel Identification (OCS-
CI) 
Task: Underdetermined Blind Identification under k-SCA assumptions. 
Initializations: ݐ݊ݑ݋ܥ ← ݀݁݊݃݅ݏݏܽ݁ݎ݌  ݋ݐ 0  ܰ௠௔௫ . 
Input: ܆ோ௘ ←  the received mixed data.  
Output: The channels (The columns of mixing matrix). 
Step 1. While ݐ݊ݑ݋ܥ < ܰ௠௔௫ perform Step 2 to 10 otherwise go to Step 
11. 
Step 2. Cluster the ܆ோ௘  based on fuzzy ART method. 
Step 3. Choose one or more groups of clusters randomly called ܆௦௘௟  . 
Step 4. Remove the columns from the matrix ܆௦௘௟  that are close to origin. 
Step 5. Normalize each observed signal i.e. ܠ௦௘௟(ݐ) =  .‖(ݐ)௦௘௟ܠ‖/(ݐ)௦௘௟ܠ
Step 6. Select ௫ܰ vectors of obtained ܆௦௘௟   . 
Step 7. Apply Algorithm 1 (S3) on ܆෩௦௘௟ . If any subspace ܟ is not detected, 
go to step 2 otherwise go to step 8. 
Step 8.    Perform bidding Algorithm 2 (BBC) for  ܟ.  
Step 9.  If at least ௫ܰ subspaces are clustered, apply Algorithm 3 (CS2). 
Step 10. If any channel candidate  ܟෝ is found, ݐ݊ݑ݋ܥ ← ݐ݊ݑ݋ܥ + 1 and 
apply BBC Algorithm.  
Step 11. End while. 

 
4. SIMULATION RESULTS 

 
The accuracy of our proposed approach was evaluated by 
simulated data experiments. We compared our measured 
channel identification error for different number of sources 
 .with those of k-SVD [14] algorithm (ݔܰ) and sensors (ݏܰ)
The k-SVD algorithm is designed to learn an overcomplete 
dictionary matrix that contains ݇ signal-atoms from meas-
urements. Then the measurement matrix can be represented 
sparsely such that each measurement vector can be consid-
ered as linear combination of few estimated atoms. Simi-
larly, in our problem the measured vectors are built by lin-
ear combination of overcomplete mixing matrix ۯ.  
Therefore, it could be used for channel identification when 
the sources are k-sparse. We employ biased angle sum 

(BAS) [5]  distance to measure the channel estimation error 
as follows 

෡൯ۯ,ۯ൫ܵܣܤ  = ∑ >)ݏ݋ܿܿݎܽ ௕܉ , ො௕܉ >)ேೞ
௕ୀଵ       (5) 

Where ܾ܉ and ܉ොܾ are bth column of the original and esti-
mated mixing matrix, with optimally re-ordered columns, 
and <. , . > denotes the inner product [15]. In our experi-
ment, we generate ܰݏ sources signal containing 2000 sam-
ples such that there are at most ݇ = ௫ܰ − 1 active sources 
in each moment. The sources are mixed using a randomly 
generated mixing matrix ۯ ∈ ܴேೣ×ேೞ  to build the mixtures 
without adding noise. Both the source and mixing matrices 
are created randomly (uniform in[−1.1]). Moreover, we 
considered ݇ -SCA assumptions (A1, A2, and A3) in the 
simulated data generation process.  
 We set ܶℎ1 = 10−15 (Algorithm 1), ܶℎ2 = 10−3 (Al-
gorithm 2), ܶℎ3 = 10−14 (Algorithm 3), ܰ௠௔௫ ≥ 10ଶ (Al-
gorithm 4). We performed each experiment 20 times with 
different ܰݔand ܰݏ values and provided the averaged error 
of estimated mixing matrix using BAS distance.  
The Orthogonal Matching Pursuit (OMP) was chosen for 
sparse source recovery phase of k-SVD and the maximum 
number of dictionary-learning iterations was set to 400. Ta-
ble 1 and 2 show the results of the proposed method and 
those of the k-SVD algorithm, respectively. Obviously, Ta-
ble 1 shows very low estimation error of the proposed 
method compared to those of the rival. It seems that the K-
SVD algorithm was not efficient for ݇ = ௫ܰ − 1. However, 
our side experiments showed that it was more efficient for 
the cases with very sparse sources, ݇ ≪ ௫ܰ which was not 
matched with our mixing scenario in this paper.  

 The Matlab codes to obtain the results of the proposed 
method (Table 1) and k-SVD algorithm (Table 2) are avail-
able from:  

(https://sites.google.com/site/ehsaneqlimi/codes).       
Table 1.The error of proposed channel identification using BAS distance 

Table 2.The error of k-SVD channel identification using BAS distance  

    Ns 
Nx 

5 6 7 8 9 

3 0.6535 0.68312 0.7632 0.8157 0.9069 
4   0.6847 0.7036 0.7712 0.8231 0.9278 

 
 

5. DISSCUSSION AND CONCLUSIONS 
 

 In this work, a novel k-SCA based underdetermined 
blind identification algorithm based on subspace selective 
search process is proposed. The proposed method differs 
from the most current subspace-based algorithms in the 
sense that, in order to reject outliers, it searches the sub-
spaces selectively.  In this way, the subspaces are detected 
with no exact information about the number of them. As a 

    Ns 
Nx 

5 6 7 8 9 

3 2.10e-08 3.31e-08 4.21e-08 5.26-08 6.32e-08 
4 3.08e-08 4.98e-08 5.42e-08  6.39e-07 8.26e-07 
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result, it could be employed to solve UBI/UBSS problems 
when the number of sources is unknown.  
 Compared to the conventional k-SCA algorithms, our 
proposed method is able to perform the channel identifica-
tion in conjunction with subspace searching in an online 
scheme. In addition, with this scheme, in contrast to the 
other well-known k-SCA methods, we can estimate the 
mixing matrix columns individually even when a few of 
subspaces are emerged in the mixture data. The method is 
evaluated with introducing mixture vectors, built by mixing 
the synthetically generated k-sparse sources, for different 
cases with different number of mixtures and sources. As the 
preliminary results, the proposed method has shown good 
performance compared to state of the art k-SVD algorithm. 
In addition, few of ݇-SCA methods, such as the methods 
proposed in [2,5], were implemented to compare with the 
proposed one. However, their running trends were not 
straightforward and mostly were trapped in local mini-
mums.  
 Consequently, they were not always successful to esti-
mate all mixing columns. Therefore, the comprehensive 
comparison with the other ݇-SCA algorithms for accuracy, 
robustness to noise, and the speed of convergence terms 
was considered for the future publications. 
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