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ABSTRACT

Fusion based Compressive Sensing (CS) reconstruction
algorithms combine multiple CS reconstruction algorithms,
which worked with different principles, to obtain a better
signal estimate. Examples include Fusion of Algorithms
for Compressed Sensing (FACS) and Committee Machine
Approach for Compressed Sensing (CoMACS). However,
these algorithms involve solving a least squares problem
which may be ill-conditioned. Modified CS algorithms
such as Modified Basis Pursuit (Mod-BP) ensured a sparse
signal can efficiently be reconstructed when a part of its
support is known. Since Mod-BP makes use of available
signal knowledge to improve upon BP, we propose to employ
multiple Greedy Pursuits (GPs) to derive a partial support
for Mod-BP. As Mod-BP makes use of signal knowledge
derived using GPs, we term our proposed algorithm as Greedy
Pursuits Assisted Basis Pursuit (GPABP). Experimental
results show that our proposed algorithm performs better than
the state-of-the-art algorithms - FACS and its variants.

Index Terms— Fusion of Algorithms, Basis Pursuit,
Greedy Pursuit, Modified Basis Pursuit.

1. INTRODUCTION

Compressive Sensing (CS) ensures the recovery of a sparse
signal x ∈ Rn using a small number of linear observations of
the form y = Φx + w ∈ Rm, where Φ ∈ Rm×n is a known
matrix with m ≪ n and w is the observation noise of variance
σ2. CS reconstruction algorithms can be broadly classified as
convex relaxation methods and Greedy Pursuits (GPs). For a
K-sparse signal x, exact recovery is possible using a convex
relaxation method such as Basis Pursuit (BP) provided the
number of measurements m = O(K log(n/K)) [1] [2]. The
problem is formulated as

x̂ = argmin
x̃

∥x̃∥1 s.t. ∥Φx̃− y∥22 ≤ ϵ (1)

where ϵ = σ2 (if the noise variance is known) or ϵ = δ (δ is
the error tolerance). GPs are iterative algorithms selecting
one or more non-zero locations in each iteration. Popular
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examples of a GP include Orthogonal Matching Pursuit
(OMP) [3], Subspace Pursuit (SP) [4] and Compressive
Sampling Matching Pursuit [5]. Robustness of CS algorithms
can be studied using the Restricted Isometry Property (RIP) of
the sensing matrix. For all K-sparse x, a sensing matrix Φ is
said to follow RIP if there exist a restricted isometry constant
δK satisfying

(1− δK)∥x∥22 ≤ ∥Φx∥22 ≤ (1 + δK)∥x∥22. (2)

Motivation and Relation to Prior Work: In CS, different
reconstruction algorithms can be combined to improve sparse
recovery. A fusion framework, Fusion of Algorithms for
Compressed Sensing (FACS) proposed in [6], employed
two or more CS reconstruction algorithms and fused the
individual estimates to obtain a better sparse signal estimate.
FACS performed better than the best participating algorithm.
Assume BP, OMP and SP are involved in the fusion
framework, and BP is the best performing algorithm. Then,
the performance of FACS will be better than that of the BP.
Later, two variants of FACS were proposed namely Modified
FACS (M-FACS) and Committee Machine Approach for
Compressed Sensing (CoMACS) [7, 8]. However, these
algorithms involve solving a least squares problem which
may be ill-conditioned. Though M-FACS attempted to ensure
the least squares problem is well-conditioned, M-FACS could
outperform FACS in the low measurement regime only. Our
goal is to obtain a fusion framework that could perform better
than that of FACS (and its variants).

It is well known that a sparse signal can be reconstructed
from a limited number of its linear projections when a part
of its support is known. Modified CS algorithms such as
Modified Basis Pursuit (Mod-BP) [9], Least-Squares-CS-
Residual (LS-CS) [10], etc could serve this purpose. The
“known” part of the support can be obtained from prior
knowledge of the signal. Since Mod-BP or LS-CS makes
use of available signal knowledge to improve upon BP, we
propose Greedy Pursuits Assisted Basis Pursuit (GPABP)
that employs multiple GPs to derive a partial support for
Mod-BP or LS-CS. Experimental results show that our
proposed algorithm performs better than the state-of-the-art
reconstruction algorithms (FACS and its variants). The rest of
this paper is organized as follows. In section 2, we discuss the
existing modified BP algorithms, and FACS framework and

23rd European Signal Processing Conference (EUSIPCO)

978-0-9928626-3-3/15/$31.00 ©2015 IEEE 699



its variants. We propose and analyze our GPABP framework
in section 3. In section 4, we present the simulation results of
GPABP comparing its performance to that of the state-of-the
art algorithms. Section 5 concludes the paper.

2. LITERATURE REVIEW

In this section, we first describe the Mod-BP algorithm, and
then discuss FACS and its variants.

Modified Basis Pursuit Algorithms for Compressive
Sensing: Vaswani et al modified CS for problems where
signal support is partially known. The support of x is denoted
as T and it can be split as T = T̃ ∪ ∆\∆e where T̃ is
the partially known support, ∆e is the error in T̃ and ∆ is
the unknown part to be estimated. The known part is either
available from prior knowledge (as in static problems) or an
estimate of support obtained from the known signal in the
ensemble (as in time sequence problems). |∆| and |∆e| are
assumed to be much smaller than |T̃ |.

Mod-BP [9] aimed at estimating the signal that is sparsest
outside T̃ and also satisfies the data constraint. The convex
optimization problem is formulated as

x̂ = argmin
x̃

∥x̃T c∥1 s.t. ∥Φx̃− y∥22 ≤ ϵ (3)

where T̃ c := [1 : n]\T̃ is the complement of T̃ . [9]
applied Mod-BP for time sequence reconstruction problem
and showed that the RIP requirements for Mod-BP are much
weaker compared to that of the BP. The key to this algorithm
is the reliability of the partial support T̃ . In [11], it is
shown that a reliable partial support can improve the recovery
performance further.

Another BP based modified CS algorithm, LS-CS, used
signal knowledge in a different manner compared to that
of Mod-BP. LS-CS replaced CS on the measurement vector
by CS on the least squares measurement residual vector
computed using T̃ . Reason why LS-CS significantly
outperformed regular CS was the signal minus its LS estimate
contains much fewer non-zero elements than the signal itself.
Though LS-CS is faster compared to Mod-BP, reconstruction
accuracy of latter is better than that of the former. In [12],
a weighted ℓ1 minimization was proposed for reconstructing
signals whose partial support information is available. It was
shown that, if at least 50% of the (partial) support information
is accurate, then weighted ℓ1 minimization is stable and
robust under weaker sufficient conditions than the analogous
conditions for standard ℓ1 minimization.

Fusion of Algorithms for Compressive Sensing: Fusion
based algorithms employed multiple CS reconstruction
algorithms, which worked with different principles, and fused
their resultant estimates to obtain a better signal estimate.
As T denotes the actual support, let T̂i be the support
estimated by ith algorithm. Let us mention the union of
the estimated support sets as joint support (denoted by Γ)

and the intersection of the estimated support sets as common
support (denoted by Λ). As |T̂i| = K, we have K ≤
|Γ| ≤ LK and 0 ≤ |Λ| ≤ K where L is the number of CS
reconstruction algorithms involved in the fusion framework.
FACS showed that the probability of estimating more correct
atoms from the union set is higher than that individually
estimated by ingredient algorithms [6]. The main steps of
the FACS involving three CS algorithms (a BP and two GPs)
is summarized in Algorithm 1.

Algorithm 1 FACS(GP1, GP2 and BP)

Input: Φ, y, K and ϵ = σ2 or δ

Procedure:
Step 1: T̂1 = GP1(Φ, y, K)
Step 2: T̂2 = GP2(Φ, y, K)
Step 3: T̂3 = BP(Φ, y, ϵ)
Step 4: Joint support Γ = T̂1 ∪ T̂2 ∪ T̂3

Step 5: x̆, such that x̆Γ=Φ†
Γy and x̆Γc = 0.

Step 6: T̂ = indices corresponding to the K largest
magnitude entries in x̆.
Step 7: x̂, such that x̂T̂ =x̆T̂ and x̂T̂ c = 0.

Output: x̂ and T̂ .

FACS involves solving a least squares problem (step 5 in
algorithm 1) which may be ill-conditioned. A modification
to FACS, M-FACS proposed in [7], included a step prior
to least squares to ensure the least squares problem is well-
conditioned. They kept removing the index of the smallest
coefficient of Φ†

Γy from the set Γ until the 2-norm condition
number of ΦΓ falls below a predefined condition number
threshold. M-FACS gave better reconstruction performance
that of FACS in the low dimension measurement regime. The
CoMACS algorithm used both Γ and Λ to estimate T̂ [8].
They had Λ ⊂ T̂ where T̂ denotes the support estimated
support set. Then they estimated the remaining K − |Λ|
indices in a similar manner as in step 6 of FACS algorithm.
The main assumption for all these algorithms is that |Γ| ≤ m.

3. GREEDY PURSUITS ASSISTED BASIS PURSUIT
(GPABP)

Among fusion based algorithms, FACS suffers ill-
conditioning of LS problem. Though M-FACS tried to
prune Γ, the modification works only in the low measurement
regime. In CoMACS, since Λ ⊂ T̂ , a wrongly chosen atom
in Λ will remain in the estimated support T̂ . For every
wrong index in Λ, there will be a correct index undetected.
On the other hand, recovery conditions and error bounds
of Mod-BP revealed the fact that a good prior knowledge
will give a much better recovery. Therefore, we propose
to employ multiple GPs and derive Λ to apply Mod-BP.
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Since a modified BP uses signal knowledge derived using
GPs, we term our proposed algorithm as Greedy Pursuits
Assisted Basis Pursuit. Therefore, we obtain a fusion
framework (involving modified BP algorithm) that could
perform better than the existing fusion based algorithms. The
RIP requirement for GPABP is expected to be favourable
compared to that of FACS and CoMACS. Note that the joint
support Γ is not required for GPABP. The key steps of our
proposed algorithm (involving Mod-BP and two GPs) are
summarized in Algorithm 2.

Algorithm 2 Proposed GPABP(GP1, GP2 and Mod-BP)

Input: Φ, y, K and ϵ = σ2 or δ

Procedure:
Step 1: T̂1 = GP1(Φ, y, K)
Step 2: T̂2 = GP2(Φ, y, K)
Step 3: Common support Λ = T̂1 ∩ T̂2

Step 4: Obtain x̆ using Mod-BP:

x̆ = argmin
x̃

∥x̃T c∥1 s.t. ∥Φx̃− y∥22 ≤ ϵ

Step 5: T̂ = indices corresponding to the K largest
magnitude entries in x̆.
Step 6: x̂, such that x̂T̂ =x̆T̂ and x̂T̂ c = 0.

Output: x̂ and T̂ .

The prior knowledge of the partial signal supports may not
be available in many scenarios, and we cannot apply Mod-BP
directly. Also the general CS theory do not assume any such
prior knowledge. For reconstructing such signals using Mod-
BP, one might use Φ†y to obtain a support estimate. But the
reliability of such estimate is crucial to satisfy the conditions
in Theorem 1. The correct locations in the estimated support
will improve recovery performance and at the same time, the
wrong ones will degrade it as well. Eventually, GPABP shows
how to use a prior knowledge based algorithm in scenarios
where prior knowledge is not available. The common support
Λ of GPABP is highly reliable as each of its entry is chosen
by every ingredient GP.

Theorem 1 (Exact Reconstruction): If Λ is the derived
common support such that T = Λ ∪ ∆\∆e, x̆ is the unique
minimizer of Mod-BP (in Algorithm 2) if

2δ2|∆| + δ3|∆| + δ|Λ| + δ2|Λ|+|∆| + 2δ2|Λ|+2|∆| < 1. (4)

Proof of the above theorem can be drawn in similar lines as
that of the proof of Theorem 1 in [9]. Only difference is that
the partial knowledge T̃ is replaced by a derived knowledge
Λ. Assuming |∆| ≤ |Λ|, the worst case RIP requirement of
GPABP may be obtained as follows. The condition in (4) is
satisfied when δ|Λ|+2|∆| <

1
5 , which simplifies to δ3|Λ| <

1
5 .

Since |Λ| ≤ K, the RIP requirement becomes δ3K < 1
5 .

Theorem 2 (GPABP error bound): If ∥w∥ ≤ ϵ and
δmax(3|∆|,K+|∆|+|∆e|) <

√
2− 1, then

∥x− x̂∥ ≤ B(max(3|∆|,K + |∆|+ |∆e|))ϵ, where

B(S) , 4
√
1 + δS

1− (
√
2− 1)δS

. (5)

As stated in [8], Λ has at least the ‘higher accuracy’ as of
the intersection of the subsets of both T̂1 and T̂2 with same
cardinality. Therefore, |∆e| will be much smaller compared
to K and the second condition in Theorem 2 can be simplified
to δmax(3|∆|,K+|∆|) <

√
2− 1.

Our proposed algorithm can be applied not only for the
sparse signals whose prior knowledge is unavailable but also
those signals whose partially known support is unreliable.
For example, correlated sparse signals (joint sparsity model-
1 in [13]) with a smaller common support compared to its
innovation support. In such cases, fusion technique will
give a better partial support compared to that obtained from
prior knowledge. Though we discuss only Mod-BP based
GPABP, our proposed algorithm can handle any modified CS
reconstruction algorithm (e.g. LS-CS) that can make use of
signal knowledge to improve sparse recovery.

Complexity Analysis: If the ingredient greedy pursuit
algorithm has a complexity say C(m,n,K) then the fusion
framework has a complexity ≈ L × C(m,n,K). However,
the computational complexity of GP will be much lower
compared to that of a convex relaxation algorithm (BP,
Mod-BP or LS-CS) [14]. For example, OMP and SP
algorithms require O(mnK) and O(mn logK) computations
respectively, and on the other hand, convex relation
algorithm requires O(m2n

3
2 ) computations. Therefore, the

computational complexity of GPABP will be in the same
order as that of the modified BP algorithm used. Low
computational complexity of GP allows us to include more
number of GPs to derive Λ. However, the accuracy of Λ do
not vary much when L is increased beyond 2.

4. SIMULATION RESULTS

In this section, we present the experimental results for
synthetic signals and real compressible signals such as
ECG signals. We performed signal recovery using four
methods: FACS, M-FACS, CoMACS and our GPABP.
Except for GPABP, in all other methods, fusion involved
three algorithms OMP, SP and BP. In the case of GPABP,
fusion step involved two algorithms: OMP and SP for
GP1 and GP2. For M-FACS, the condition number
threshold is fixed as 10 (as in [7]). In the case of noisy
measurements, if σ2 is known, ϵ can be fixed as σ2.
However, we do blind (in terms of knowledge about w)
reconstruction by fixing ϵ = δ = 10−3. The Sparselab
solver (available at http://sparselab.stanford.edu) is used for
the implementation of BP in FACS, M-FACS and CoMACS.

23rd European Signal Processing Conference (EUSIPCO)

701



Fig. 1. Noiseless measurement case: Exact reconstruction
versus sparsity level

The cvx solver (available at http://cvxr.com/cvx/) is used for
the implementation of Mod-BP in GPABP.

Synthetic sparse signal: For our experiments, we
generated Gaussian sparse signal of length n=256. First, we
present the probability of exact reconstruction as a function of
the sparsity level K. For each value of K, 250 independent
trials are performed to obtain the average results. In each trial,
an m×n Gaussian random measurement matrix is generated.
Number of measurements m is fixed to be 128 and the
sparsity levels were chosen from K=35 to K=75 in steps of
5. If the maximum magnitude difference between the original
signal and the reconstructed signal is smaller than 10−3, the
reconstruction is considered to be perfect. Fig. 1 shows
that our proposed GPABP has the best probability of exact
reconstruction among all four methods. Surprisingly, the
performances of FACS and CoMACS are indistinguishable
(as can be seen in fig. 1). Also, the performance of M-FACS
is worse compared to that of FACS. For the same parameters,
average Mean Square Error (MSE) plot is shown in fig. 2.
Average MSE stands for MSE averaged over 250 trials. The
MSE is computed as follows,

MSE =
∥x− x̂∥22

n
. (6)

It can be noticed that GPABP has the least MSE among all the
methods and is stable even for high K values. For K > 60,
CoMACS performs slightly better than FACS. For K > 65,
M-FACS gives lesser error compared to that of FACS. This
indicates that the modification to FACS is effective only in the
high K regime. We repeated the same experiment for noisy
measurements. Measurement vector y is corrupted by a noise
such that its SMNR is 15 dB. It can be seen from fig. 3 that
GPABP is least affected by measurement noise particularly
when K ≥ 55. Also, M-FACS has the best performance

Fig. 2. Noiseless measurement case: Average MSE versus
sparsity level

among the rest of the methods. Though all four methods
used the same number (and type) of ingredient algorithms,
proposed GPABP gives the best performance.

Real world signal - Compressible ECG signal: Next
experiment illustrates the performance for real compressible
signals. The leads (ECG signals) are extracted from records
100, 101, 102 and 103 from the MIT-BIH Arrhythmia
database [15]. They are processed in chunks of 256 samples
(with amplitudes ranging from 0 to 255). These signals will
serve as the ground truth for MSE computation. Discrete
cosine transform is used to obtain sparse representations of
the signals. The sparsity level K is fixed as ⌊ m

logn⌋. For each
chunk, the measurement vector y is corrupted by a noise such
that its SMNR is 15 dB. Fig. 4 shows the average MSE (MSE
per chunk) as a function of measurement ratio m

n (varied
between 0.2 and 0.4). It is evident that GPABP gives better
recovery performance (compared to FACS and its variants) in
the case of real world compressible signals too. Again, the
performances of FACS and CoMACS are indistinguishable.

5. CONCLUSION

In this paper, we proposed an efficient fusion approach
involving GPs and Mod-BP. Multiple GPs were employed
to derive a common support Λ, which is used for Mod-BP.
Experimental results show that our proposed GPABP scheme
gives better reconstruction accuracy compared to that of the
existing fusion based algorithms. Our proposed GPABP is
a prior based recovery technique for scenarios where prior
knowledge is not available. GPABP can also be extended to
recover signals whose prior knowledge of the partial support
is not reliable.
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Fig. 3. Noisy measurement case (SMNR = 15 dB): Average
MSE versus sparsity level
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