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ABSTRACT

Collaborative-based representation classifiers have widely
spread in the latest years achieving remarkable results in sig-
nal and image processing tasks. In this paper, we consider
these approaches for the hyperspectral image classification.
Specifically, we focus on collaborative and sparse represen-
tation classifiers and we perform an investigation on the role
of the different regularizations and constraints that can be
considered with respect to the classification performance. In
addition, we propose to consider the Nearest Subspace Clas-
sifier with regularization which, from the experiments, has
proven to be a competitive classification technique. Experi-
mental results have been conducted considering both spectral
and spatial features of a real hyperspectral image.

Index Terms— Sparse representation classification, col-
laborative classification, nearest subspace classifier, hyper-
spectral imaging, remote sensing

1. INTRODUCTION

Collaborative-based representation classifiers perform a rep-
resentation of an unlabeled sample as a linear combination of
other samples of known label (i.e., linear regression) [1]. The
set of labeled samples used as regressors is called dictionary
and its elements atoms. The representation can be modeled in
a variational formulation where one seeks an approximation
as close as possible to an input signal by finding the weights
defining the combination of the atoms. Those weights can
be referred to as code. Such scheme is called collaborative
since atoms concur in the representation of a signal. The idea
that make this strategy appealing for classification relies on
the consideration that a signal is typically similar (read cor-
related) to samples of its same class [2]. This means that
samples of the same class should achieve a more accurate re-
construction of the signal with respect to considering atoms of
the other classes. Classification can then be performed, once a
sample is reconstructed (i.e., the code is found), by assigning
the sample to the class whose atoms that are involved more
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in the representation (i.e., if considered alone they produce
the lowest reconstruction error). In general in the process of
identification of the code regularization and constraints can be
employed. Regularization based on the ¢; norm of the code
has been successfully applied as a way to enforce sparsity on
the solution (i.e., favoring few atoms to be active in the repre-
sentation — in general, obtaining a selection of atoms that are
relevant in the classification). Classifiers based on sparse rep-
resentations (named Sparse Representation Classifiers, SRC)
have been proven their effectiveness in several applicative do-
mains of signal and image processing [1]. Focusing on re-
mote sensing, with a particular regard to the analysis of hy-
perspectral images, sparse techniques have been successfully
employed in spectral unmixing [3] and classification [4, 5].
With regard to the latter task, it has been seen that sparsity
can cope well with classification with small sample size sce-
narios [6] such as hyperspectral image classification. SRC has
shown to deal very well when processing spatial features for
image classification achieving outstanding performances [5].
Although sparse regularization positively influences classifi-
cation, it has a significant computational complexity. The
problem of finding a solution of the reconstruction problem
under sparsity needs to be solved numerically and it remains
practically tractable for small dictionaries. For this reason,
strategies based on other forms of regularization such as those
based on /5 have been proposed in order to make the problem
more computationally tractable, especially when closed form
solutions exist. Those approaches have been referred to as
Collaborative Representation Classifiers (CRCs). Arguments
have brought about the greater influence of the collaborative
scheme on the performances in classification rather than the
type of regularization [7]. Thus, legitimating regularization
strategies lighter in terms of computational burden even if
less effective in the task of classification with respect to SRC.
Collaborative classifiers based on {5 regularization have been
started to appear and show their effectiveness for the classifi-
cation of hyperspectral images [8, 9].

This paper mainly stems from the work [5] in which SRC
was successfully applied in hyperspectral image classification
using a set of spatial features. However, little insight was
given in that work on the role of the regularization parameters
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and constraints considered. With this work we want to make
such analysis and, in addition, compare the SRC with the
CRC strategy in this context. We consider also in this work a
Nearest Subspace Classifier (NSC) with regularization as an
additional way to restrain the solution space. NSC follows an
analogous strategy to S/CRC, with a difference in the repre-
sentation of the unknown samples. In NSC, the representation
is done for each class separately considering only the atoms
in the dictionary belonging to that class. Thus, NSC can be
thought as a class-wise collaborative representation classifier.
NSC has been mainly considered without regularization [6],
leading in general to lower performances with respect to reg-
ularized schemes. In this work we explore the capabilities of
this collaborative strategy but considering regularization.

The remainder of the paper is as follows. A basic intro-
duction of collaborative-based representation classifiers and
NSC is given in the following section. Section 3 reports the
results of the experimental analysis carried out on a hyper-
spectral image. Concluding remarks are presented in the last
section.

2. COLLABORATIVE-BASED REPRESENTATION
CLASSIFIERS

Let us consider an unlabeled sample x € R' (i.e., in this
case, a pixel in a hyperspectral image of [ bands) that will
be processed by a collaborative-representation classifier. In
this scenario, we have at our disposal a dictionary A com-
posed of n labeled samples (i.e., training set), grouped in m
classes: A = {A;,As,...,A,,} with a subdictionary A;
being composed of the n; training samples belonging to the
1—class (Z;’;l n; = n). The sample x is then represented as
a linear combination of the element of the dictionary in which
the weights are given by the vector a. Once « is defined, it
is possible to estimate the thematic class of x according to:
CTEES(X) =arg min ||x— A;ala. (D
i€{l,...,m}
In words, the sample x is assigned to the class whose ele-
ments in the dictionary lead to the least residuals in the re-
construction. The way the vector of coefficients a is derived
determines the type of classifier.

2.1. Sparse and collaborative representation

A collaborative representation classifier solves the following
problem:

.1
min - [[x — Ae3 + A, 2

being A a scalar value modulating the penalty and |||, the
p-norm on the code implementing the regularization term.
For Sparse Representation Classification, p = 1 whereas
for Collaborative Representation p = 2. We underline that
here the vector of coefficients in the representation is derived
considering all atoms of all classes simultaneously.
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2.2. Nearest Subspace Classifier

In NSC a test sample is assigned to the subspace to whom
the sample is closest to. So this leads to solve the following
problem for every class i:

. 2
min ||x — A; a5 3)
(673

Then the coefficient vector can be constructed as:

a={ai,...,an}.
In this strategy, the coefficients in « are accounted separately
for each class. NSC can be seen as a way to automatically
avoid the simultaneous contribution of multiple atoms in the
dictionary as it might happen for CRC with feeble or without
regularization, especially in overdetermined scenarios (i.e.,
n > [). In a way, NSC can induce a form of sparsity since
it natively disables some atoms when performing the recon-
struction of a signal. However, without regularization NSC
might lead to poor representations affecting the classification.
In this work we propose to consider a version of the NSC
with regularization. Namely,

rgn||x—Aiai||§+A||ai||p7 @)

As for S/CRC, the regularization based on ¢ - or {5-norms
on the code can be coupled with other constraints. For exam-
ple, non-negativity (NN) can be imposed on the code (i.e.,
a > 0). In hyperspectral unmixing, the positivity on the code
is related to a physical property of the solution i.e., the non
negativity of the abundances [3]. Whereas, in classification
such constraint is not associated to a physical meaning but can
help in constraining the space of solutions as shown in [5].

3. EXPERIMENTAL RESULTS

3.1. Experimental set-up

The tests are run on a well-known hyperspectral image of the
University of Pavia, Italy. The image was collected by the
ROSIS optical sensor over the urban area of the University of
Pavia, Italy. The flight was operated by the Deutschen Zen-
trum for Luftund Raumfahrt (DLR, the German Aerospace
Agency) in the framework of the HySens project, managed
and sponsored by the European Union. The image size in
pixels is 610 x 340, with very high spatial resolution of 1.3
meters per pixel. The number of data channels in the ac-
quired image is 103 (with spectral range from 0.43 to 0.86
pm). Nine thematic land-cover classes were identified in the
university campus: Trees, Asphalt, Bitumen, Gravel, Metal
sheets, Shadows, Selfblocking Bricks, Meadows, and Bare
soil. For these data, a set of 42776 labeled samples is avail-
able. In order to perform classification, we have randomly
selected some samples for the pool of available labeled pixels
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Fig. 1: Pavia University image. (a) True color composition;
(b) Available set of labeled samples with nine thematic classes
(for color codes see [5]).

(with different rates) for making the dictionary and the train-
ing of the classifiers. The rest of the samples have been used
for validation. A color composite and the map of the labeled
samples is reported in Figure 1.

Two sets of features have been considered in the experi-
ments:

e Spec: the spectral bands,

e EMAP: spatial features (144) obtained by an Extended
Multi-Attribute Profile (EMAP) [10].

Spec is composed of the spectra as acquired by the sensor
(i.e., the original image) whereas EMAP is a multilevel (e.g.,
multiscale) decomposition of the image obtained by morpho-
logical attribute filters. In greater details, a sequence of at-
tribute filters (i.e., connected filters defined in the mathemati-
cal morphology framework) have been applied to the first four
components of the Principal Component Analysis (PCA) con-
sidering several values of the filters (leading to progressively
coarser images). Attribute filters process an image according
to a given measure that we call attribute. Roughly speaking,
the operator filters out regions that are not meeting a condi-
tion imposed by the filter (as that the area should be greater
than a threshold) [10]. Four attribute have been considered in
order to build the EMAP: area, length of the diagonal a re-
gion bounding box, moment of inertia (first moment invariant
of Hu) and standard deviation of the values of the pixels in a
region. An example of features in the EMAP is given in Fig-
ure 2.
Spec and EMAP features being different in nature show dif-
ferent characteristics. For example, EMAP can be seen as a
mostly piece-wise smooth function in which samples might
alternate intervals of constant or smooth values and punctual
large variations. Spec values are in general smoother. How-
ever, samples belonging to different classes are more separa-
ble in the EMAP feature space than in the Spec one.

Eight collaborative-based representation classifiers have
been considered in the experiments:
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Fig. 2: Example of features in the EMAP. (a) First principal
component; Results of the attribute filtering obtained with the
following attributes: (b) area; (¢) moment of inertia; (d) stan-
dard deviation.

e SRCT: Collaborative classifier with ¢; regularization
(SRC) and NN constraint

e SRC: Collaborative classifier with ¢; regularization (SRC)

e CRC™: Collaborative classifier with f» regularization
(CRC) and NN constraint

e CRC: Collaborative classifier with /5 regularization (CRC)

e NSC: Collaborative classifier with ¢; regularization and
NN constraint

e NSCjy: Collaborative classifier with ¢; regularization

e NSCj: Collaborative classifier with £, regularization and
NN constraint

e NSCsy: Collaborative classifier with ¢5 regularization.

Four values of )\, the coefficient weighting the regularization
term have been considered. Namely {0,107%,1073,1072}.
Five different sizes of the training set have been considered.
Specifically the training was done with a fixed number of
training samples per class in the interval {5, 10, 20, 40, 60}.

For every setting (i.e., classifier, A and training set size)
we have run the classification with 5 different random real-
izations of the training sets. All the results reported refers to
the average of the values of Overall Accuracy (OA), i.e., per-
centage of pixels correctly classified, computed on each of the
five realizations.

3.2. Experiments
3.2.1. Comparison among classification strategies

We will at first compare the different classification strategies.
In order to compare the results we have chosen to report the
maximum of OA obtained over the experiments with the four
values of \. This is because, the different classification strate-
gies react differently to the same regularization so selecting a
certain value of A might favor some strategies over the others.
The results obtained are in Figure 3. When considering the
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Fig. 3: Maximum value of OA achieved over the different val-
ues of lambda A = {0,107*,1073,1072}. Overall accuracy
reported for (a) Spec and (b) EMAP features for different
training samples rates.

Spec features, the strategy of NSC with NN constraint have
globally reached the greatest results in terms of OA. SRC™,
SRC, NSC; and CRCT perform closely even if for larger sets
of training samples the SRC strategy results more effective.
Approaches without NN constraint and with /5 regulariza-
tion achieved the lowest performances showing the need of
(stronger) regularizations for such type of features. Different
conclusions can be drawn looking at the results from EMAP.
All techniques achieved in general results within a range of
about 3% showing a more stable behavior also for varying
sizes of the training. This might be due to the easier discrim-
inability of the samples in this feature space w.r.t. in the Spec
space. SRCT, SRC and CRC™ achieved very similar results
outperforming the other strategies. NSC; and NSCs outper-
formed the counterparts with NN constraint.

3.2.2. Influence of the NN constraint

For this analysis we consider the results obtained by the dif-
ferent classification strategies without any other constraint on
the reconstruction code (i.e., A = 0). We recall that in this
setting, SRC equals CRC and NSC; equals NSC, since the
regularization term is inactive. The classification accuracies
are reported in Figure 4. From the obtained results it is possi-
ble to state that in most of the cases the NN constraint leads to
results that are superior with respect to those obtained by the
same classifier without constraint. Considering the scenario
with no regularization, the NN constraint helps in restraining
the space of solutions limiting the possibility that samples of
a class could be well represented by other classes. However,
as shown in Figure 4(b) when the dictionary is small (i.e., few
training samples available) the constraint can be too restric-
tive even affecting the performances.

3.2.3. Influence of the regularization

The results for a number of 10 and 60 training samples per
class are reported in Figure 5. Globally, as also seen in the
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Fig. 4: Influence of the NN constraint. Overall accuracy re-
ported for (a) Spec and (b) EMAP features for A = 0 for
different number of training samples.

previous analysis, strategies with NN constraint attain results
that are less affected by the weight of the regularization.
Among all, NSC] has shown constant behavior for both fea-
ture types and training sample size. For strategies without
the NN constraint, in general the regularization leads to an
improvement of the results. However, too high values of A
can degrade the performances as seen for the EMAP features.
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Fig. 5: Influence of the regularization. Overall accuracy
reported for Spec and EMAP features with (a)-(b) 10 and
(c)-(d) 60 training samples per class considering A =
{0,1074,1073,1072}.

The timings are reported in Table 1 showing the signifi-
cantly reduced complexity of schemes with /5 regularization
and without NN constraint.

Examples of classification maps are shown in Figure 6.
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A sect src crct  crc Nsc  wsc;  NsCci  NsC

0 1093.1 8.9 941.9 8.20 562.6 8.2 536.0 8.3
107% | 11529 4526 9519 9.1 6915 4728 5427 89
1073 | 1139.6 8299 9425 95 6736 5132 5093 8.1
1072 1106.6  948.1 569.7 9.1 693.8 527.9 300.6 8.7

Table 1: Timings in [s], for EMAP features with 60 samples
per class and different values of A.

\

(a) (b) (© (d

(e) () (& ()

Fig. 6: Classification maps obtained for EMAP features, A =
1074 and 10 training samples per class, for the following
classifiers (OA [%] values in brackets): (a) SRCT (92.07);
(b) SRC (91.76); (c) CRCT (91.75); (d) CRC (91.01); (e)
NSCIr (87.20); (f) NSCq (90.10); (g) NSC§r (87.21); (h) NSCo
(89.62).

4. CONCLUSION

In this paper we have conducted a comparative study among
several collaborative-based representation classification strate-
gies. In addition to the classical SRC and CRC methods we
have investigated the NSC with regularization, being a much
less explored approach. The analysis aimed at showing the
influence of the different parameters such as regularization
terms and NN constraint in the classification results. From the
results of the experiments we have reached some conclusions:
i) SRC and CRC perform overall similarly, though the sparse
regularization leads in general to more stable and slightly
higher results; ii) the NN constraints is relevant in terms
of classification, in general leading an increase in the perfor-
mances expecially if other regularizations on the solutions are
not present; iii) NSC with regularization have proven to be a
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competitive approach achieving results similar and in some
cases superior to those of SRC and CRC; iv) techniques based
on optimization endowed by a closed form solution (i.e., CRC
and NSCy) achieve in general similar results, though with a
greater variability w.r.t. the others. As future directions of
this work, we plan to confirm experimentally the conclusions
found here on other datasets and to better investigate the re-
lationship between reconstruction error in the representation
and classification accuracy.

REFERENCES

[1] Michael Zibulevsky and Michael Elad, “L1-12 optimization in
signal and image processing,” Signal Processing Magazine,
IEEE, vol. 27, no. 3, pp. 76-88, 2010.

[2] John Wright, Allen Y Yang, Arvind Ganesh, Shankar S Sas-
try, and Yi Ma, “Robust face recognition via sparse repre-
sentation,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 31, no. 2, pp. 210-227, 2009.

[3] M-D Iordache, José M Bioucas-Dias, and Antonio Plaza,
“Sparse unmixing of hyperspectral data,” Geoscience and Re-
mote Sensing, IEEE Transactions on, vol. 49, no. 6, pp. 2014—
2039, 2011.

[4] Yi Chen, Nasser M Nasrabadi, and Trac D Tran, “Hyperspec-
tral image classification using dictionary-based sparse repre-
sentation,” Geoscience and Remote Sensing, IEEE Transac-
tions on, vol. 49, no. 10, pp. 3973-3985, 2011.

[5] Bengin Song, Jun Li, M. Dalla Mura, Peijun Li, A. Plaza, J.M.
Bioucas-Dias, J. Atli Benediktsson, and J. Chanussot, “Re-
motely sensed image classification using sparse representa-
tions of morphological attribute profiles,” IEEE Transactions

on Geoscience and Remote Sensing, vol. 52, no. 8, pp. 5122—
5136, Aug 2014.

[6] Q Sami ul Haq, Linmi Tao, Fuchun Sun, and Shigiang Yang,
“A fast and robust sparse approach for hyperspectral data clas-
sification using a few labeled samples,” Geoscience and Re-
mote Sensing, IEEE Transactions on, vol. 50, no. 6, pp. 2287—
2302, 2012.

[71 D Zhang, Meng Yang, and Xiangchu Feng, “Sparse represen-
tation or collaborative representation: Which helps face recog-
nition?,” in Computer Vision (ICCV), 2011 IEEE International
Conference on. IEEE, 2011, pp. 471-478.

[8] J.Li, H. Zhang, L. Zhang, X. Huang, and L. Zhang, “Joint
collaborative representation with multitask learning for hyper-
spectral image classification,” Geoscience and Remote Sens-
ing, IEEE Transactions on, vol. PP, no. 99, pp. 1-14, 2014.

[9] Sen Jia, Linlin Shen, and Qingquan Li, “Gabor feature-based
collaborative representation for hyperspectral imagery classi-
fication,” Geoscience and Remote Sensing, IEEE Transactions
on, vol. 53, no. 2, pp. 1118-1129, Feb 2015.

M. Dalla Mura, J. A. Benediktsson, B. Waske, and L. Bruz-
zone, “Extended profiles with morphological attribute filters
for the analysis of hyperspectral data,” International Journal
of Remote Sensing, vol. 31, no. 22, pp. 5975-5991, 2010.

(10]



