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ABSTRACT
Discriminative language modeling (DLM) is used as a post-
processing step to correct automatic speech recognition
(ASR) errors. Traditional DLM training requires a large
number of ASR N-best lists together with their reference tran-
scriptions. It is possible to incorporate additional text data
into training via artificial hypothesis generation through con-
fusion modeling. A weighted finite-state transducer (WFST)
or a machine translation (MT) system can be used to generate
the artificial hypotheses. When the reference transcriptions
are not available, training can be done in an unsupervised way
via a target output selection scheme. In this paper we adapt
the MT-based artificial hypothesis generation approach to un-
supervised discriminative language modeling, and compare
it with the WFST-based setting. We achieve improvements
in word error rate of up to 0.7% over the generative baseline,
which is significant at p < 0.001.

Index Terms— Discriminative language model, confu-
sion model, machine translation, unsupervised training

1. INTRODUCTION

An automatic speech recognition (ASR) system outputs pos-
sible transcriptions of a given input speech utterance. These
transcriptions, also called the hypotheses, are generally ar-
ranged in an N-best list accompanied by their recognition
scores (posterior probabilities assigned by the recognizer). In
a typical example, one can observe that the hypothesis with
the highest recognition score, called the 1-best, is not neces-
sarily the most accurate transcription among the N-best. Here
the accuracy is measured by aligning the hypothesis to its ref-
erence (i.e., the manual transcription of that utterance) and
counting the number of word errors.

Discriminative language modeling (DLM) techniques are
applied as a post-processing step for ASR to reorganize the
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N-best list such that more accurate hypotheses occur at the
top [1]. Training a DLM requires knowing the reference of
the utterances beforehand, which takes too much time and
effort especially if the number of data is large. In fact, in
some applications, there may not even be any permission to
listen to the recordings due to privacy issues.

One way to facilitate DLM training when the data is inad-
equate is to make use of a separate text source through con-
fusion modeling. Most of the time, finding such a corpus is
easier than transcribing all of the utterances. In this scenario,
a small number of transcribed speech data is used to build a
confusion model (CM) which captures the confusions (errors)
made by the ASR system. This CM is then used to transform
the source text into artificial hypotheses which look like the
real ASR hypotheses. The accuracy of the artificial hypothe-
ses can easily be determined since their reference, the source
text, is already known. This process is sometimes referred to
as semi-supervised training in the literature, because a small
number of transcribed data is used to “label” the rest of the
training examples [2–4].

It is also possible to perform discriminative language
modeling even when no manual transcriptions are available
at all. This process, called unsupervised training, can be
done in a variety of ways including extracting phrasal co-
horts [5], retraining with a weaker acoustic model [6], or
relying on a confidence score rather than the reference [7].
In this study we follow the work of Kuo et al. [8] by utiliz-
ing the Minimum Bayes Risk (MBR) score to replace the
missing reference with a selected hypothesis called the tar-
get output. Once the target ranks of the N-best hypotheses
are determined, one can use them to train the DLM directly
or via confusion modeling. We will refer to these cases as
unsupervised-DLM and unsupervised-CM, respectively.

There exists several approaches to build a CM. One ap-
proach forms a weighted finite-state transducer (WFST) to
store the confusions made by the recognizer along with their
occurrence probabilities. The artificial hypothesis generation
process then becomes a simple composition operation of the
source text with the CM. Another approach includes confu-
sion modeling as part of a machine translation (MT) system in
which artificial hypotheses make up the possible target trans-
lations of the source sentence.
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The study [9] compares these two approaches for semi-
supervised training where the references of examples for
training the CM are known, and reports that artificial hy-
potheses generated by the MT system are more effective
than those of the WFST approach. The WFST approach
has also been applied to the unsupervised-CM case in [10]
where the authors achieve a performance comparable to the
semi-supervised case. The main purpose of this paper is
to present the use of MT-based confusion modeling in an
unsupervised-CM scenario, and to compare its performance
to its WFST-based counterpart. To the authors’ knowledge,
this is the first paper to feature an MT-based confusion model
in an unsupervised setting.

This paper is organized as follows: In Section 2, we
present the methods required to train the DLM. In Section
3 we explain the two artificial hypothesis generation ap-
proaches in detail. Section 4 includes our experimental setup
and results. Section 5 concludes this paper with a summary
and discussion.

2. DISCRIMINATIVE LANGUAGE MODEL
TRAINING

This section deals with the basics of discriminative language
model training. We choose the linear model and use the rank-
ing perceptron algorithm to train its parameters. To select the
target ranks of the hypotheses for unsupervised training, we
employ the minimum Bayes risk criterion.

2.1. Linear model

In this study we adapt the linear model of [11] for unsuper-
vised modeling. In this setting, x represents the spoken utter-
ance that is input to the recognizer, and y represents its written
counterpart. In a supervised scenario, y would stand for the
reference (manual transcription) of x. Throughout this paper,
since we do not have any reference, we will use y to refer to
the target output, which is the hypothesis selected to replace
the reference.

ỹ ∈ Ỹ are the N-best hypotheses that serve as training ex-
amples for discriminative modeling. These may be either real
hypotheses output by the ASR system, or artificial hypotheses
generated by the CM, to be explained in Section 3.

The symbol Φ(ỹ) denotes the feature vector which repre-
sents a hypothesis in a d-dimensional modeling space. In our
implementation, this vector contains the unigram frequencies
of the hypothesis. w is the model vector that is estimated
by discriminative training. Each element of w is the weight
associated with the corresponding feature of Φ.

2.2. Ranking perceptron

We use a variant of the ranking perceptron algorithm as
in [12] to train the parameters of the linear model. The WPer-

input number of training examples I ,
number of iterations T , margin multiplier τ > 0,
learning rate η > 0, decay rate γ > 0
w = 0, wsum = 0
for t = 1 . . . T do

for i = 1 . . . I do
for (a, b) ∈ Ỹ do

if ra � rb & 〈w,Φ(a)−Φ(b)〉 < τ∆(a, b) then
w = w + η∆(a, b)(Φ(a)−Φ(b))

wsum = wsum + w
η = η · γ

return wavg = wsum/(IT )

Fig. 1. The WPerRank algorithm.

Rank, whose pseudocode is given in Figure 1, considers the
N-best hypotheses in pairs (a, b), and aims to reorganize the
list such that if a has fewer word errors (ranked higher) than b,
a’s score (its inner product with the current model) must be
significantly greater than b’s. The score difference thresh-
old is adjusted by a margin multiplier denoted by τ∆(a, b)
where ∆(a, b) is the Levenshtein (edit) distance between the
hypotheses. This multiplier also occurs in the model update
to take into account the total number of word errors [13].
Learning rate (η) and decay rate (γ) multipliers are included
to facilitate the convergence of the iterative optimization pro-
cedure. The WPerRank makes several passes over the data
and in the end, the model weights obtained at each update
step are averaged for robustness.

In the testing phase, the estimated model vector wavg is
used to reweight the N-best hypotheses of an ASR output.
The final result is the hypothesis which gives the highest inner
product score with the estimated model:

y∗ = argmax
ỹ∈Ỹ

{
w0 logP (ỹ|x) + 〈wavgΦ(ỹ)〉

}
. (1)

Here, logP (ỹ|x) is the recognition score assigned to ỹ
by the baseline recognizer for the given utterance x, and w0

is a scaling factor which is optimized on a held-out set. The
overall system performance is computed by considering all y∗

and represented in word error rate (WER).

2.3. Using MBR hypothesis as the target output

The rank of a hypothesis is an essential element in discrim-
inative language modeling as it provides the supervision for
training. If the reference transcriptions are not available, the
accuracy, thus the ranks of the hypotheses cannot be deter-
mined. One way to overcome this is to utilize a computed
score as an indicator of their target ranks. In this study we
follow the same method as in [8] to select a target output hy-
pothesis in place of the missing reference, using the Minimum
Bayes Risk (MBR) scores. The MBR score for a target output
candidate ŷ is defined as:
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MBR(ŷ|x) =Eỹ|x[∆(ỹ, ŷ)]

=
∑
ỹ∈Ỹ

∆(ỹ, ŷ)p(ỹ|x), (2)

where ∆(ỹ, ŷ) denotes the edit distance of the other hypothe-
ses ỹ aligned to the candidate, and p(ỹ|x) denotes the recogni-
tion score assigned to ỹ by the ASR system. The MBR target
output is the hypothesis which yields the lowest MBR score:

y = argmin
ŷ∈Ỹ

MBR(ŷ|x). (3)

3. GENERATING ARTIFICIAL HYPOTHESES

It is possible to include additional text data (that is not ac-
companied by any acoustic recording) into DLM training by
generating artificial hypotheses via confusion modeling. The
CM is built using the real N-best hypotheses and is supposed
to capture the inherent variability in the ASR output. In this
section we present two hypothesis generation approaches that
we use in this study.

3.1. WFST-based confusion modeling

The first approach uses a context independent CM similar to
that presented in [4]. We first align each hypothesis to the
MBR target output using the edit distance. This alignment
yields a list of matching language unit pairs that are confused
by the ASR, and the frequency of their match-ups gives the
probability of their confusion. The CM is represented by a
single-node WFST having these pairs as input-output values
and the confusion probabilities as weights.

In order to generate artificial hypotheses, the source text
is composed with the CM. This yields alternative hypotheses
together with their occurrence probabilities in the form of a
graph which resembles the lattice output of an ASR system
that processed a spoken version of that source text. In the
end, the most probable N paths are selected and listed.

3.2. MT-based confusion modeling

We compare the WFST-based artificial hypothesis generation
approach with a statistical phrase-based machine translation
(MT) framework. An MT system typically tries to match the
words or phrases of a source language to those of the target
language, and requires a bilingual parallel corpus. In our im-
plementation, we treat the MBR target outputs as the source
language text and the N-best ASR hypotheses as their trans-
lations in the target language. This way, the translation alter-
natives learned by the MT system will yield a CM which is
similar to that obtained in the WFST-based approach. How-
ever, this time the CM is context dependent as the MT system
is phrase-based.

The steps of the MT-based system are as follows: First,
morph alignment is performed between the parallel text. Un-
like traditional MT, we use the Levenshtein algorithm as in
the WFST setup rather than a more complicated word align-
ment package such as Giza++ [14], since there is no variation
in the order of morphs in our data. Using these alignments,
the system computes the maximum likelihood of the lexical
translations, extracts phrases and tunes the weights of the fea-
ture functions for the phrase translation rules. Finally, the
source text is decoded into artificial hypotheses using these
translation probabilities. In order to preserve the alignment
structure, a phrase reordering model is not built and distor-
tions are not allowed during decoding.

4. EXPERIMENTS

In this study we apply discriminative language modeling for
Turkish large vocabulary continuous speech recognition. We
first introduce our experimental setup and then present the ex-
perimental results.

4.1. Experimental setup

In our experiments, we use parts of our Turkish Broadcast
News Speech and Transcripts Database [15], which is a col-
lection of Turkish TV and radio channel recordings that are
manually transcribed. The dataset is divided into two non-
overlapping pieces as follows:

The first piece consists of 60-hours of acoustic data, which
are passed through the ASR system to obtain the real hypothe-
ses. These hypotheses are used either to train the DLM di-
rectly, or to build the CM. Due to its acoustical nature, we
will refer to this piece as A throughout this section.

The second piece consists of manual transcriptions of 34K
utterances, which roughly corresponds to the same duration
of speech as the first piece. We use the second piece as the
source text upon which artificial hypotheses are generated.
We intentionally select these transcriptions but not some other
text so that we can compare the artificial hypotheses with the
real hypotheses of the same source. Following a similar nota-
tion, we will refer this piece as T .

Turkish is an agglutinative language of the Altaic fam-
ily. It has a highly inflectional morphology which causes
high out-of-vocabulary rates in ASR. In order to compensate
for this, we use morphs instead of words to as the language
unit. Morphs are statistically derived pieces of a word, similar
to morphemes. We choose morphs because previous experi-
ments have shown that they suit better to the agglutinative na-
ture of Turkish [16], and because experiments provide higher
accuracies with this setup [4].

Our baseline ASR system is composed of a triphone
acoustic model and a morph trigram generative language
model [16], and is prepared using the AT&T library [17] and
the SRILM [18] toolkit. For artificial hypothesis generation,
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the WFST-based system is implemented by the OpenFST
library [19] whereas the MT-based system is implemented by
the Moses toolkit [20]. The Morfessor tool is used to generate
the morphs [21]. Significance tests are done using the NIST
MAPSSWE tool [22].

The ASR N-best lists include 50 hypotheses. In order to
obtain equivalent results, we limit the number of artificial hy-
potheses to 50. The feature vector of the linear model, Φ,
consists of morph unigram frequencies. There are 34K unique
morphs in the real N-bests of set A and 19K unique morphs
in the source text of set T .

The held-out (parameter optimization) set contains 3.1
hours and the test (evaluation) set contains 3.3 hours of
speech, both of which correspond to around 2K utterances.
Prior to discriminative modeling, the generative baseline
WER is 22.9% for the held-out set and 22.4% for the test
set. The oracle rates (the lowest WER that can be obtained
on the N-best lists) for the same sets are 14.2% and 13.9%,
respectively.

4.2. Experimental results

We first investigate the performance of three different dis-
criminative language modeling scenarios. Table 1 presents
the WERs obtained by the WPerRank algorithm on the
held-out and test subsets. The first row represents the
unsupervised-DLM scenario, where the DLM is trained di-
rectly using the real ASR hypotheses (A). In the second row,
A is used to build a WFST-based CM, which in turn generates
the artificial hypotheses TWFST through unsupervised-CM.
The third row is similar to the second, this time using the
MT-based approach to generate TMT . For all experiments,
the WPerRank is allowed to make at most 50 iterations over
the training data, and algorithmic parameters are optimized
on the held-out set.

Training Data Held-out Test
A 22.5 22.0
TWFST 22.5 22.3
TMT 22.4 22.0

Table 1. WPerRank WER (%) for different training data types.

We see from Table 1 that all three experiments provide
lower WER than the held-out baseline of 22.9%. Training the
DLM using TMT improves the held-out accuracy by 0.5%,
which is statistically significant at p < 0.001. The test set
performance is also better than using TWFST , which shows
that the model obtained by the MT-based approach is more
generalizable.

The unsupervised-DLM experiment which uses real hy-
potheses A to train the DLM shares the best test set WER
with TMT . Note that in this experiment, the manual transcrip-
tions of the acoustic data are not known, and the MBR target

Training Data Held-out Test
A + TWFST 22.2 22.0
A + TMT 22.3 22.1
A + TWFST + TMT 22.2 22.0

Table 2. N-best combination WPerRank WER (%).

outputs are used instead. For comparison, if the manual refer-
ence transcriptions of A were available, the rate on the same
set would be 21.6% (not shown on the table). This suggests
that unsupervised training is able to provide half of the gains
that could be obtained with the supervised technique, without
altering the test set accuracy.

It is also possible to combine the unsupervised-DLM and
unsupervised-CM approaches by combining the real hypothe-
ses of set A with the artificial hypotheses of set T . Table 2
shows the performances for possible combinations of differ-
ent data types. We see that combining all three sources de-
creases the held-out WER by an additional 0.2%, down to
22.2%.

5. CONCLUSION

In this study we compare WFST- and MT-based artificial hy-
pothesis generation approaches for unsupervised discrimina-
tive language modeling. These techniques allow us to make
use of acoustic and text data that are coming from different
sources to train the discriminative language model, with no
supervision at all.

Experiments have shown that the MT-based approach is
able to yield to slightly better WER than the WFST-based ap-
proach, although the superiority of MT-generated hypotheses
are not as apparent as reported in [9] where a similar analysis
was carried out for semi-supervised training. Combining the
real and artificial examples also creates a positive effect on
the system accuracy.

In order to achieve good discriminative language perfor-
mance without supervision, the generated hypotheses must
be sufficiently diverse, yet as similar to the real hypotheses
as possible. This in turn requires a well-trained confusion
model. In the future we would like to extend our CM cover-
age by aligning the N-best hypotheses to themselves instead
of the MBR-hypothesis. We also would like to improve hy-
pothesis diversity by trying efficient data sampling strategies
on the generated N-bests.
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