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ABSTRACT
Improving the quality of positron emission tomography

(PET) images, affected by low resolution and high level of
noise, is a challenging task in nuclear medicine and radiother-
apy. This work proposes a restoration method, achieved after
tomographic reconstruction of the images and targeting clini-
cal situations where raw data are often not accessible. Based
on inverse problem methods, our contribution introduces the
recently developed total generalized variation (TGV) norm to
regularize PET image deconvolution. Moreover, we stabilize
this procedure with additional image constraints such as pos-
itivity and photometry invariance. A criterion for updating
and adjusting automatically the regularization parameter in
case of Poisson noise is also presented. Experiments are con-
ducted on both synthetic data and real patient images.

Index Terms— PET imaging, total generalized variation,
deconvolution, Poisson noise, inverse problem

1. INTRODUCTION

In radiotherapy, positron emission tomography (PET) im-
ages provide oncologists with useful information about the
metabolic activity of the patient. The accumulation of the
18F-fluorodeoxyglucose (18F-FDG) radiotracer in tissues of
abnormally high metabolic activity, e.g., cancer cells, leads to
the emission of positrons later detected by the PET imaging
system [1]. Combined with anatomical CT or MR images,
these functional images are widely used for diagnosis, moni-
toring during the treatment and follow-up of the patient after
therapy.

A challenging step in radiotherapy treatment is the ac-
curate delineation of the tumour volume based on PET im-
ages [2]. Some methods rely on visual interpretation or on
activity threshold determination but suffer from methodolog-
ical limitations [2]. The use of more complex segmentation
algorithms is impeded by the two main drawbacks of PET
imaging: low spatial resolution and high level of noise [1].
The first one is mainly due to the blur introduced by the ran-
dom positron travel, the photon diffusion in the patient tis-
sues before annihilation and the large size of the scintillators
required to detect high-energy photons. The resulting point
spread function (PSF) of the PET system is generally not uni-
form and can vary slightly in the field of view (FOV). The lat-
ter, i.e., the noise in raw data, is due to low photon detection
efficiency of the detectors and the limitation of the injected
§ Research Associates with the Belgian F.R.S.-FNRS.

tracer dose for obvious radio-protective reasons. The noise is
Poissonian in the projection space, before reconstruction.

Improving the quality of PET images is essential before
applying more advanced segmentation techniques. Deblur-
ring and denoising can be applied either during the recon-
struction process or in a post-processing phase. The second
approach is more appropriate for clinical use since the access
to raw data or to the reconstruction algorithm of the scanner is
not always possible. After sinogram correction and standard
iterative 3D reconstruction algorithms like OSEM [3], noise
in image is still multiplicative in first approximation (scaled
Poisson). Nowadays, the most widely used tool in clinical de-
noising is a classical Gaussian filter. Edge-preserving filters
such as bilateral filters or M-smoothers are also used but, like
the Gaussian filter, they are generally designed for additive
noise [4]. This issue can be overcome using first a variance-
stabilizing transform (VST) such as proposed by Anscombe
[5]. For the deblurring step, classical deconvolution algo-
rithms like Van Cittert’s or Landweber’s [4] are used. Other
methods combine the denoising and deblurring steps by solv-
ing an optimization problem (inverse problem) [6, 7].

In this paper, we choose the inverse problem approach in
a post-processing phase and propose a problem formulation
specific to the restoration of PET images. Our method intro-
duces the total generalized variation (TGV) as a regulariza-
tion term [8] for PET deconvolution, considers specific prop-
erties of PET physics such as positivity and photometry in-
variance and takes into account the Poisson statistics of noise
through the data fidelity term and the choice of the regular-
ization parameter λ. A criterion for automatic selection of λ
is presented. The validation of the TGV algorithm is made on
synthetic images and on real medical images where the PSF
is well estimated.

The paper is organized as follows. Sec. 2 introduces the
mathematical model and the underlying assumptions, as well
as theoretical and numerical aspects related to the convex op-
timization problem. The experimental setup is described in
Sec. 3, along with the results, which are discussed in Sec. 4.
Conclusions are presented in Sec. 5.

2. FORWARD MODEL AND INVERSE METHOD

In this section, we describe the forward model and the as-
sumptions we made. We then explain the formulation of the
inverse problem based on a maximum a posteriori estimator
(MAP). Finally, we give some details about the numerical im-
plementation and the choice of the parameters
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2.1. Forward model
For the sake of simplicity, we work with a discretized model.
The two dimensional images of size N1 × N2 belong to the
Euclidean space RN with N = N1N2. Let u0 ∈ RN be
the original and unkown PET image of the functional pro-
cesses in a patient body. After tomographic reconstruction,
the observed image z ∈ RN is associated with u0 through
the forward model

z = Nν(K(u0)),

where K is a blur operator accounting for both the physical
and instrumental inaccuracies and Nν is a noise corruption
of parameter ν. Some assumptions on K and Nν lead to
a simpler model. In first approximation, the PSF near the
center of the FOV is uniform, Gaussian and isotropic in the
2D-plane [4]. Consequently, the blurred image is assumed to
result from the convolution of the original image with the PSF
of the scanner. As mentionned in Sec. 1, noise is considered
as Poissonian in first approximation. A simpler model is

z = P(Ku0), (1)

where the convolution operator K ∈ RN×N is assumed to be
known (see Sec. 3), linear (uniform PSF) and bounded. Each
pixel i of the original image is corrupted by Poisson noise P
with mean (Ku0)i.

Physics of PET imaging suggests two additional con-
straints to model (1). The first property is the positivity since
the original image u0 represents a nonnegative activity in a
phantom or in vivo, e.g., the metabolic activity. Hence,

u0 � 0.

The second property is photometry invariance. Total photom-
etry preservation means that the total photon counts in the
original and observed images are approximately the same.
This property is particularly valuable for quantification as-
pects like the measurement of standardized uptake values [1],∑N

i=1(u0)i ≈
∑N
i=1 zi.

2.2. Inverse problem formulation
Solving an inverse problem consists in finding an estimator
û0 of the original image u0 from observations z in (1). Noise
and the low-pass filter effect of the PSF lead to an ill-posed
problem for which direct inversion is not possible and unicity
of the solution is not guaranteed. To address this issue and
reduce the set of possible solutions, a widely used method is
to regularize the problem [9]. A penality term encourages the
solution to respect a certain prior model of the original image.

2.2.1. A priori knowledge on the PET images

A possible assumption about the image concerns its piecewise
smoothness. In many applications, frameworks based on total
variation (TV) are used to promote piecewise constant im-
ages [8]. However, as Knoll et al. [10] mentionned in the case
of MRI, this type of regularization is not well adapted to real

medical images. Since these images are not piecewise con-
stant, staircasing artifacts are observed in smooth image areas
with TV regularization [8,10]. The total generalized variation
(TGV), introduced by Bredies et al. [8] can be considered as
the generalization of TV to higher-order image derivatives.
Simplifying its presentation to our conventions, the second
order TGV of x ∈ RN is defined in a discrete setting as

TGV2
α(x) = min

w∈RN×2
‖∇x−w‖2,1 + α‖ε(w)‖2,1, (2)

where α ∈ R is a positive constant balancing between the
edge-preserving term and the smoothness-promoting term.
The general discrete gradient operator∇ applicable to N × k
tensor fields is defined as

∇ : RN×k → RN×2k, x 7→ (∇x) = (∇1x,∇2x),

with k ∈ N0 and ∇i ∈ RN×N the first spatial derivative of
the tensor field in direction ei. The symmetrized derivative
operator ε is

ε : RN×2 → RN×4, x 7→ ε(x) = 1
2 ((∇x) + (∇x)S23) ,

where S23 ∈ {0, 1}4×4 is a matrix permuting the second and
the third columns of (∇x). Applying ε on the gradient of an
image provides information about its second derivative. The
concept of symmetrized tensors is detailed in [8]. Finally, the
Lp,q norm of x ∈ RN×k is defined as

‖x‖p,q =
(∑N

i=1 ‖xi‖qp
) 1
q

.

Deriving TGV2
α(x) is not as easy as TV(x) because an ad-

ditional minimization problem has to be solved. The optimal
value of w in (2) depends on the features of image x. Locally,
in smooth areas, w is close to∇x to give more importance to
the smoothness-promoting term. In regions near image edges,
w is close to 0 to preserve sharp edges like TV. These prop-
erties make TGV2

α more adapted to real PET medical images
than TV. Moreover, the absence of staircasing artifacts im-
proves the efficiency of subsequent segmentation algorithms.

2.2.2. Bayesian approach

To take into account this a priori knwoledge on u0, the best
estimator choice is the Bayesian MAP estimator, defined as

û0 = arg max
u∈RN

p(u|z)

= arg min
u∈RN

− log p(z|u)− log p(u). (3)

The first term of (3) is the fidelity term. This term encourages
the estimated image to be close to observations z and depends
directly on the noise statistics. In the case of PET images, it
is the negative log-likelihood of the Poisson distribution, i.e.,

− log p(z|u) =
∑N
i=1(Ku− z · f(Ku))i + r(z),

where r(z) depends only on z, f is applied componentwise
on vector with f(t) = log t if t > 0 and 0 otherwise and ·
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denotes the Hadamard (or elementwise) product. The second
term in (3) is the regularization term promoting the respect
of the a priori knowledge, i.e., a minimal TGV2

α. Indicator
functions ıRN+ and ıC take into account positivity and photom-
etry invariance constraints. They equal zero if the constraint
is respected and +∞ otherwise.

The nonsmooth convex optimization problem reads

min
u∈RN,

w∈RN×2

λ
∑N
i=1(Ku− z · f(Ku))i + ‖∇u−w‖2,1

+ α‖ε(w)‖2,1 + ıRN+ (u) + ıC(u), (4)

where λ > 0 is the regularization parameter, i.e., the trade-off
between the data fidelity and regularization terms. The value
α = 2 is used in practice [10].

2.3. Numerical implementation
The discrete setting is described in details in [8]. Discrete op-
erators∇1 and∇2 are approximated using forward and back-
ward first-order finite differences. The convolution of the im-
age with operator K is made with a FFT. The undesired bor-
der effects are avoided using a “padding” method presented
by Almeida et al. [11].

2.3.1. Chambolle-Pock primal-dual algorithm

Let L : X → Y be a linear continuous operator with a norm
defined by ‖L‖2 = max{‖Lx‖2 | x ∈ X with ‖x‖2 ≤ 1}
and G : X → [0,+∞[ and F ? : Y → [0,+∞[ be
proper, convex, and lower-semicontinuous functions. The
Chambolle-Pock (CP) primal-dual algorithm [12] is designed
to solve the following saddle-point problem

min
x∈X

max
y∈Y

〈Lx,y〉 − F ?(y) +G(x), (5)

which is a primal-dual formulation of the primal problem
min
x∈X

F (Lx) +G(x).

The CP algorithm belongs to the family of proximal al-
gorithms [13]. Such algorithms are based on the notion of
proximal operator and can deal with optimization of non dif-
ferentiable functions. Let ϕ be a lower semicontinuous con-
vex function from X to ]−∞,+∞[ such that domf is non
empty. The proximal operator of ϕ : X → X evaluated in
x̃ ∈ X is unique and defined as [13]

proxϕ(x̃) := arg min
x∈X

1
2‖x̃− x‖22 + ϕ(x). (6)

In our case, the presence of the two indicator functions
leads to a nonsmooth and non differentiable objective func-
tion. The use of a proximal algorithm and particularly CP is
appropriate [14]. A compact formulation of (4) is given by

min
u∈RN,

w∈RN×2

F1(Ku) + F2(∇u−w) + F3(ε(w)) +G(u),

with straightforward definitions of F1, F2, F3 andG from (4).

Algorithm 1 for TGV denoising and deblurring of PET images.

1: initialization: n = 0 ; u(0) = ū(0) = y ∈ RN ; w(0) =
w̄(0) = 0 ∈ RN×2 ; p(0) = 0 ∈ RN ; q(0) = 0 ∈ RN×2 ;
r(0) = 0 ∈ RN×4 ; choose τ (0) = σ(0) = 0.9/‖L‖2.

2: repeat
3: p(n+1) = proxσ(n)F?1

(p(n) + σ(n)Kū(n))

4: q(n+1) = proxσ(n)F?2
(q(n) + σ(n)(∇ū(n) − w̄(n)))

5: r(n+1) = proxσ(n)F?3
(r(n) + σ(n)ε(w̄(n)))

6: u(n+1) = proxτ(n)G(u(n) + τ (n)(div[q(n)]−K∗p(n)))
7: w(n+1) = w(n) − τ (n)(−q(n) − div[r(n)])
8: ū(n+1) = 2u(n+1) − u(n)

9: w̄(n+1) = 2w(n+1) −w(n)

10: until convergence of u

A primal-dual formulation similar to (5) of this problem is
derived in a product space [15] using duality principles [9,12]
and leads to Algorithm 1, i.e., the CP algorithm adapted to
TGV denoising and deblurring of PET images. Function ϕ?

is the Legendre-Fenchel conjugate of any function ϕ. The
divergence operator div is defined as equal to −∇∗ with

∇∗ : RN×2k → RN×k, x = (x1,x2) 7→ (∇∗1x1 +∇∗2x2).

2.3.2. Proximal operators

Let x̃ ∈ RN . The proximal operator of the primal function G
is given by a combination of positivity (max) and photometry
invariance (average) proximal operators [13],

proxσG(x̃) = max(x̃, 0)− 1
N

∑N
i=1 (max(x̃, 0))− z)i .

From definition (6) and the Moreau decomposition prop-
erty [13], the proximal operator of F ?1 is, for each component
i of x̃ ∈ RN [14],

proxσF?1 (x̃i) =
1

2

(
x̃i + λ−

√
(x̃i − λ)2 + 4σλzi

)
,

if zi is non-zero and is equal to parameter λ otherwise.
By conjugation of F2 and F3, F ?2 and F ?3 are indicator

functions. Their proximal operators are projection operators
onto the convex sets Q = {x ∈ RN×2|‖x‖2,∞ ≤ 1} and
R = {x ∈ RN×4|‖x‖2,∞ ≤ α}.

2.3.3. Parameters choice

Step-sizes σ and τ are updated at each iteration depending on
the size of the primal and dual residuals [15]. To ensure the
convergence, condition στ‖L‖22 < 1 has to be verified [12].

The choice of the regularization parameter is based on the
discrepancy principle for Poisson noise adapted in [16] to im-
ages with null background. Parameter λ is selected such that

KL(z,Kûλ) ≈ M
2 , (7)

whereM ≤ N is the number of non zero pixels and KL is the
Kullback-Leibler divergence defined as

KL(x,y) =
∑N
i=1(y − x+ x · f(x)− x · f(y))i.

Interestingly, KL(z,Kûλ) = F1(Ku) − F1(z), so that (7)
can be interpreted as a distance in the range of F1 ◦K.
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Fig. 1: Results on synthetic data. From left to right: original image, corrupted images (convolution with isotropic Gaussian kernel and
Poisson noise: βtop = 1 and βbottom = 0.1), TV restored image (λtop = 32.8, λbottom = 4.7), TGV restored image (λtop = 25.3, λbottom = 5.6)
and residual image computed as the difference between the original and the TGV restored images.

3. EXPERIMENTS

Synthetic images. The synthetic image used for a first val-
idation of the method is a modified Shepp-Logan phantom
with intensities in [0, 255] (see Fig. 1). The original image
is piecewise constant and is therefore hardly representative of
real medical data. In the modified version, constant surfaces
are replaced with a mixture of affine, Gaussian and sinusoidal
functions. Since the background is expected to be null in PET,
it is set to zero in the phantom image.

To simulate different acquisition times, the pixel inten-
sities of the original phantom u0 are multiplied by a con-
stant positive factor β (13 values in [10−2, 102]). The bigger
β, the higher the number of photon count per pixel and the
smaller the relative effect of the noise. To simulate the blur,
the 128× 128 images are convolved with a normalized Gaus-
sian kernel with standard deviation equal to 1.17 pixel. This
PSF is assumed to be ideal, i.e., to be constant over the whole
FOV. Finally, each pixel of the image is corrupted by Poisson
noise. Algorithm 1 was used to deblur and denoise the images
with TGV regularization (as well as TV with modification of
the proximal operators). Parameter λ is updated at each of the
20 meta-iterations according to the following rule:

λ(l+1) = λ(l) KL(z,Kûλ)
M/2 ,

where the updating factor is called “KL ratio”. The signal-
to-noise ratio (SNR) is used to quantify the quality of the
corrupted image (SNRin) and the restored image (SNRout)
relative to the original one. Convolution and noise influence
the SNRin. SNR between image x and the original image y
is defined as

SNR(x,y) = 20 log10

(
‖x‖2
‖x−y‖2

)
.

Results. A visual comparison between TGV and TV reg-
ularizations is presented on Fig. 1 for two levels of noise:
β = 1 and β = 0.1. The impact of the noise level (or simi-
larly, the acquisition time) on the SNR is illustrated in Fig. 2

for both TGV and TV regularizations of the same corrupted
images. The input SNR is indicated for extremal values. Fi-
nally, Fig. 3 shows the evolution of the KL ratio as a function
of the meta-iterations for automatic selection of parameter λ.

Patient images. PET images of patients with pharyngola-
ryngeal squamous cell carcinoma were acquired on a Siemens
Ecat HR scanner for a previous study [17]. The size of the
image is 128 × 128 × 47 and the voxel size is 2.2 × 2.2 ×
3.12 mm3. The algorithm was applied on axial slices. The
PSF was measured experimentally with a line source perpen-
dicular to the axial slices in diffusing material (water). In first
approximation, the PSF at 100mm from the FOV center was
Gaussian, isotropic, with 6mm of FWHM. Algorithm 1 was
used to deblur and denoise the images. The value of the opti-
mal regularization parameter was set to λ = 5 (see Sec. 4).

Results. Since there is no original image available, main
results consist of a visual comparison between TGV and TV
regularizations (see Fig. 4).

4. DISCUSSION

Synthetic images. Results on Fig. 1 show that both meth-
ods remove the noise and preserve edges. Some staircasing
artifacts affect TV restored images since the original image
is not piecewise constant. This cartoon-like appearance re-

−2 −1 1 2

10

20

3.4 dB 10.4 dB

log10 β [-]

SNRout [dB]TGV
TV

Fig. 2: Output SNR as a function of the level of noise β for TGV and
TV regularizations. Input SNR are indicated for extremal values.
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Fig. 3: KL ratio evolution as a function of the meta-iteration count.
The thick black curve indicates the mean of 13 realizations (different
noise levels) and the thin curve indicates the standard deviation.

moves details like the small white disks. As expected, TGV
restored images keep the smoothness property of the original
image. The value of parameter λ depends on the image dy-
namics (bigger if higher intensity) and is similar for the two
regularization methods. Distinction between TGV and TV is
not so obvious on the graph of the SNR evolution. In average,
SNRout of TGV is 0.5 dB above TV’s and is mostly due to
the contribution of small β (2 dB for β = 10−2). The updat-
ing rule for parameter λ gives convincing results since the KL
ratio converges to 1 and the standard deviation to 0 (average
on 13 realizations). These results validate the automatic se-
lection rule of λ in case of Poisson noise. Regarding Fig. 3,
10 iterations seem to be enough for accurate estimation of λ.

Patient images. The staircasing artifacts observed in syn-
thetic image with TV restoration are also visible on real med-
ical images (Fig. 4). Since data are not corrupted with a pure
Poisson noise (see Sec. 1), the updating rule for regulariza-
tion parameter λ cannot be applied. The choice of the value
of λ is highly subjective and depends on the application as
mentionned in [14].

5. CONCLUSIONS AND FUTURE CHALLENGES
This work presents a new method for deconvolution of PET
images based on TGV regularization. The use of TGV instead
of TV as a prior is more adapted to real medical images for

Fig. 4: Results on real medical data (full and zoom). From left to
right: corrupted PET image, TV and TGV restorations with λ = 5.

which the piecewise-constant assumption is not verified. In
case of pure Poisson noise, we validate an updating rule for
parameter λ. Further work will investigate the nature of the
noise after reconstruction (with Monte-Carlo simulations) to
improve the formulation of the inverse problem as well as the
updating rule of λ.
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