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ABSTRACT

The profusion of spectral bands generated by the acquisition pro-
cess of hyperspectral images generally leads to high computational
costs. Such difficulties arise in particular with nonlinear unmix-
ing methods, which are naturally more complex than linear ones.
This complexity, associated with the high redundancy of information
within the complete set of bands, make the search of band selection
algorithms relevant. With this work, we propose a band selection
strategy in reproducing kernel Hilbert spaces that allows to dras-
tically reduce the processing time required by nonlinear unmixing
techniques. Simulation results show a complexity reduction of two
orders of magnitude without compromising unmixing performance.

Index Terms— Hyperspectral data, nonlinear unmixing, band
selection, kernel methods

1. INTRODUCTION

Hyperspectral images (HI) consist of hundreds or even thousands of
contiguous spectral samples ranging from the visible to the near in-
frared portions of the light spectrum. HIs trade spacial for spectral
resolution [1], a consequence of which is that observed HI pixels can
be mixtures of the spectral signatures of the materials present in the
scene. The spectral signature of each material is usually available
as a vector whose elements are proportional to the reflectances asso-
ciated with that material at each frequency band. Such vectors are
typically called endmembers due to their geometrical interpretation
in the linear mixing case. The analysis of HIs frequently aims at un-
mixing the spectral information present at each pixel in the image, a
study known as hyperspectral unmixing (HU). Unmixing problems
can be cast as supervised or unsupervised learning problems depend-
ing on whether the endmembers are known or not.

Several models have been proposed in the literature to describe
the mixing process of spectral information in HIs. The simplest one
is the linear mixing model (LMM), in which each observed pixel
spectrum is modeled as a linear combination of the endmembers [2].
Though the LMM simplifies the mathematical treatment of the un-
mixing problem, it has been recognized that significant nonlinear
effects are often present in the spectral mixing occurring in real im-
ages [3]. Nonlinear mixing occurs, for instance, due to multiple in-
teractions among light and different materials during the acquisition
process. Recognition of such nonlinear effects has led to several
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nonlinear mixing models for HI processing. These models include
adding cross-terms of different endmembers to the LMM [4], using
bilinear mixture models [5], post-nonlinear mixing models [6,7], and
kernel-based models [8]. Most nonlinear unmixing techniques are
based on Bayesian inference [5], on using manifold learning tech-
niques and geodesic distances [9–11], or processing data in repro-
ducing kernel Hilbert spaces (RKHS) [8, 12].

One of the problems in practical implementation of unmixing
algorithms is the profusion of spectral bands generated in the ac-
quisition process, which leads to high computational costs. This is
especially true for nonlinear unmixing algorithms, which are natu-
rally more complex than linear techniques. Such inherent complex-
ity, associated with the high redundancy within the complete set of
bands, make the search of band selection techniques natural and rel-
evant [13]. Several band selection algorithms have been proposed
for linearly mixed HIs, which generally requires solving an opti-
mization problem [14]. Nonlinear unmixing presents an even more
challenging problem for band selection.

In this paper, we propose a technique for band selection in non-
linear supervised HI unmixing problems. This method applies a ker-
nel k-means algorithm to identify nonlinearly separable clusters of
spectral bands in the corresponding RKHS. The solution is evaluated
using the SK-Hype nonlinear unmixing algorithm [8] on the selected
bands. Simulation results indicate a complexity reduction of two or-
ders of magnitude without compromising unmixing performance.

The paper is organized as follows. First, we state the unmixing
problem and introduce usual nonlinear mixing models. Then, we de-
scribe a nonlinear unmixing algorithm operating in RKHS. Next, we
introduce our band selection algorithm based on kernel k-means. We
provide promising simulation results to illustrate the performance of
our approach. Finally, we present some concluding remarks.

2. MIXTURE MODELS

Each observed HI pixel can be written as a function of the endmem-
bers and a noise component that covers the unknown or unmodeled
factors in the system:

r =  (M) + n (1)

with r = [r1, . . . , rL]
> the observed pixel vector over L spectral

bands, M = [m1, . . . ,mR] the L⇥R matrix of endmembers mi,
n a noise vector, and an unknown function. Several mixing mod-
els have been presented in the literature, depending on the linearity
or nonlinearity of , type of mixture, scale, and other properties [3].
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2.1. The Linear Mixing Model (LMM)

The LMM assumes that is a convex combination of the endmem-
bers, that is,

r = M↵+ n

subject to 1>↵ = 1, and ↵ ⌫ 0

(2)

where the vector ↵ = [↵1, . . . ,↵R]
> contains the proportions (or

abundances) of each endmember in M and, therefore, cannot be
negative and should sum to one. The observation r` at the `-th spec-
tral band in (2) can be written as

r` = m>
�`
↵+ n` (3)

where m>
�`

is the `-th row of M . For n` = 0 (noiseless case),
the sum-to-one and positivity constraints on the abundances in (2)
confine the data (pixels) to a simplex, for which the vertices are the
endmembers.

2.2. Nonlinear Mixing Models

Different parametric nonlinear models have been proposed in the
literature (see, e.g., [3] and references therein). Here we review two
popular models that will be used later on to generate synthetic data
for evaluation purposes.

The generalized bilinear model (GBM) [5] is given by

r = M↵+

R�1X

i=1

RX

j=i+1

�ij↵i↵jmi �mj + n

subject to 1>↵ = 1, and ↵ ⌫ 0

(4)

where the parameters �ij 2 [0, 1] govern the amount of nonlinear
contribution, and � denotes the Hadamard product. For simplicity,
we consider in the following a simplified version of this model, with
a single parameter � to control the nonlinear contribution such that
�ij = � for all (i, j).

The post nonlinear mixing model (PNMM) [15] is

r = g(M↵) + n (5)

where g(·) is a nonlinear function applied to the result of a linear
mixing. The PNMM can represent a wide range of nonlinear mixing
models, depending on g(·). For instance, the PNMM considered
in [8] is defined as

r = (M↵)

⇠
+ n (6)

where (v)⇠ denotes the exponential value ⇠ applied to each entry of
the input vector v. The PNMM was explored in other works using
different forms for g(·) applied to HU [6, 16, 17].

The GBM (4) and the PNMM (6) nonlinear mixing models con-
sider mainly the scattering effect in light interactions with endmem-
bers. Other models consider different nonlinear effects, depending
on the characteristics of the application, such as the type of mix-
ture, the types of materials, the geometry of the reflection surface,
and the constraints over the abundances [18–22]. More importantly,
these informations are usually missing in HU problems. Therefore,
it makes sense to consider nonlinear unmixing strategies that do not
make strong assumptions about the nonlinearity in the mixture.

3. NONLINEAR UNMIXING STRATEGY

This section reviews the SK-Hype algorithm1 for nonlinear unmix-
ing of HIs [8]. It considers the mixing model consisting of a linear
trend parametrized by the abundance vector ↵ and a nonlinear resid-
ual component  . This model is given by

r` = u↵>m�` + (1� u) (m�`) + n` (7)

where u 2 [0, 1] controls the amount of linear contribution to the
model and  (·) is an unknown function in an RKHS H.

Kernel methods are efficient machine learning techniques that
were initially introduced for solving nonlinear classification and
regression problems. They consist of linear algorithms operating
in high dimensional feature spaces into which the data have been
mapped using kernel functions [23]. These approaches are based
on the framework of reproducing kernels which states that, for any
positive kernel (m�i ,m�j ), there exists a Hilbert space H with
inner product h· , ·iH and a mapping

� : RL �! H (8)
m�i 7�! (·,m�i) (9)

such that (m�i ,m�j ) = h�(m�i),�(m�j)iH. This last prop-
erty allows to implicitly compute inner products in H by evaluat-
ing a real function, (m�i ,m�j ), in the input space. Other useful
properties are  (m�j ) = h ,(·,m�j )iH for all  in H, and the
reproducing property (m�i ,m�j ) = h(·,m�i),(·,m�j )iH.

The optimization problem proposed in [8] for estimating the un-
known variables ↵,  (·) and u in (7) is

min

↵, ,u

1

2

✓
1

u
k↵k2 + 1

1� u
k k2H

◆

+

1

2µ

LX

`=1

(r` �↵>m�` �  (m�`))
2

(10)

subject to ↵ ⌫ 0 and 1>↵ = 1. This convex problem can be solved
using a two stage alternating iterative optimization procedure with
respect to (↵, ) and u.

3.1. Solving with respect to (↵, )

Introducing the Lagrange multipliers � and �, the dual problem
of (10) for fixed u is given by [8]

max

�,�
G(u,�,�) =

� 1

2

✓
�
�

◆> ✓ Ku + µI uM
uM> uI

◆✓
�
�

◆

+

✓
r
0

◆> ✓
�
�

◆

subject to � ⌫ 0

(11)

with Ku = uMM>
+ (1 � u)K, and K the Gram matrix such

that Kij = (m�i ,m�j ). This leads to the following solution of
primal problem:

8
><

>:

↵? =

M>�?+�?

1>(M>�?+�?)

 ? = (1� u)
PL
`=1 �

?
` (·,m�`)

e?` = µ�?`

(12)

where �? and �? are the solutions of (11).
1Matlab code available at www.cedric-richard.fr
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3.2. Solving with respect to u

Using the stationary conditions (12), the optimum value for u given
�? and �? can be computed each iteration as [24]

u? =

 
1 + (1� u?�1)

s
�?>K�?

kM>�? + �?k2

!
(13)

where u?�1 is the optimum u? obtained at the previous iteration.

4. BAND SELECTION AND UNMIXING

Band selection is the strategy of choice for reducing the complex-
ity of HI processing when the original spectral information of each
pixel needs to be preserved [25]. Most existing band selection algo-
rithms have been derived assuming linearly mixed HIs. To the best
of our knowledge, the problem of band selection for a single nonlin-
early mixed pixel and with the objective of reducing the complexity
of the unmixing process is still largely untreated in the literature. As
each pixel may be better characterized by a different set of bands,
we propose a simple supervised band selection approach to be ap-
plied to individual pixels so that only those endmembers present in
each pixel, that is, the matrix M for that pixel, are considered. The
clustering technique proposed in the following is based on the kernel
k-means (KKM) algorithm [26], and uses the fact that each band of
the HI is a function of the elements in one row of matrix M . The
choice of the KKM algorithm is due to the practical assumption that
we lack information about the nonlinearity associated to the end-
member mixing in each HI.

4.1. Kernel k-means for band-selection

For band selection we consider each row of M as an element of a
vector space, and search for a set of K disjoint clusters C1, . . . , CK

in that space. Then, a unique wavelength is chosen using the KKM
algorithm to represent each cluster. KKM is an extension of the stan-
dard k-means clustering algorithm that identifies nonlinearly separa-
ble clusters [26]. It maps the data implicitly to a RKHS H where it
performs a conventional k-means algorithm. Since the computation
of the centroids in space H is intractable, KKM algorithms use the
reproducing property [27] to directly compute squared distances be-
tween points in a cluster Ck. Therefore, given a cluster Ck enclosing
points {(·,m�`)}`2Ck , we can write the centroid µk as

µk =

1

Nk

X

i2Ck

(·,m�i) (14)

where Nk is the number of points in Ck. The squared distances to
the centroid of Ck are then computed as

k(·,m�`)� µkk2H = (m�` ,m�`)

� 1

Nk

X

i2Ck

(m�` ,m�i)

+

1

N2
k

X

i2Ck

X

j2Ck

(m�i ,m�j )

(15)

and the cluster error is defined as

E(µ1, . . . , µK) =

KX

k=1

X

`2Ck

k(·,m�`)� µkk2H. (16)

To preserve the original HI band information, we propose to rep-
resent cluster Ck by the band `k corresponding to the closest point to
the centroid µk:

`k = argmin

`2Ck

k(·,m�`)� µkk2H. (17)

The global kernel k-means (GKKM) algorithm uses the princi-
ples above for incremental clustering [26]. GKKM avoids poor local
minima and produces near-optimal solutions that are robust to clus-
ter initialization. A fast GKKM (FGKKM) version that performs
a unique KKM run and greatly reduces the complexity of the al-
gorithm can also be used. Algorithm 1 details the application of
FGKKM algorithm using (17) for band selection. We refer to Algo-
rithm 1 as KKMBS for short.

Algorithm 1: FGKKM Band Selection (KKMBS)
Input : The L⇥R matrix M and the desired number of

bands Nb.
Output: Selected band indices `.

1 % Find clusters
2 [C1, . . . , CNb ] = FGKKM(M , Nb);
3 % Find the lines of M closer to the centroids in C1, . . . , CNb

4 for k = 1 to Nb do
5 `k = argmin`2Ck

k(·,m�`)� µkk2H;
6 end
7 return `

4.2. Unmixing of reduced data

For a given N -pixel HI region with a known endmember matrix M ,
define R = [r1, . . . , rN ] as the matrix of observations. The unmix-
ing problem then reduces to an inversion step for which we solve the
optimization problem described in Section 3 to obtain the estimated
abundances given by A = [↵?1, . . . ,↵

?
N ]. We propose to replace

matrices R and M by their reduced versions Rr and Mr contain-
ing only Nb selected bands obtained with Algorithm 1. Then, the
SK-Hype algorithm can be used to perform data unmixing and to
estimate the abundance matrix as shown in Figure 1.

KKMBS SK-Hype
M

R bAMr

Rr

Fig. 1: Band selection and unmixing.

5. SIMULATION RESULTS

This section presents simulation results with synthetic data to il-
lustrate the potential of the band selection technique. The HI was
built using measured spectra from eight materials: alunite, calcite,
epidote, kaolinite, buddingtonite, almandine, jarosite and lepidolite.
Their spectra were selected from the spectral library of the ENVI
software and consisted of 420 contiguous bands, covering wave-
lengths from 0.3951 to 2.56 micrometers. We compared the results
obtained with 2 nonlinear mixing models using 5 unmixing algo-
rithm implementations and 2 performance measures: the root mean
square error (RMSE) and the relative execution time (RET).

RMSE = kA� bAkF /(NR) (18)
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Table 2: RMSE and RET for different nonlinearities in each band.

PNMM
5 Endmembers 8 Endmembers

Alg. (Nb) RMSE RET (BS+HU) RMSE RET (BS+HU)
FCLS 0.1966 1 0.1521 1
SK-Hype 0.1127 3744.9 0.0765 3672.2
SK-Hype(10) 0.1131 21.7 (24.3) 0.0827 21.5 (24.4)
SK-Hype(100) 0.1140 153.4 (184.2) 0.0771 140.3 (170.8)
SK-Hype(300) 0.1129 1764.3 (1907.5) 0.0765 1601.0 (1743.7)

GBM
5 Endmembers 8 Endmembers

FCLS 0.0527 1 0.0390 1
SK-Hype 0.1090 3432.5 0.0745 3825.1
SK-Hype(10) 0.1053 20.8 (23.6) 0.0730 20.9 (23.0)
SK-Hype(100) 0.1105 142.2 (171.5) 0.0748 142.9 (173.8)
SK-Hype(300) 0.1093 1612.8 (1735.2) 0.0745 1637.8 (1778.1)

where kXkF denotes the Frobenius norm of matrix X . The RET for
the p-th algorithm was determined as RETp = tp/tFCLS, where tp is
the execution time for the p-th algorithm and tFCLS is the execution
time for the Fully Constrained Least Squares (FCLS) algorithm.

The data were nonlinearly mixed using the PNMM and GBM
models presented in Section 2.2. For PNMM, we used ⇠ = 0.7,
and for GBM, we considered � = 1. We generated 6 databases
using the two models and different number of endmembers (5 and
8). Each database had 2000 pixels generated using random abun-
dances drawn uniformly from the simplex defined by (2). The addi-
tive noise power �2

n was chosen to produce a 21dB SNR. For each
dataset we unmixed the data using FCLS, SK-Hype without band
selection and the proposed algorithm for Nb = [10, 100, 300]. For
both SK-Hype and KKMBS, we used the Gaussian kernel [28] with
bandwidth �2

k = 0.3. Table 1 presents the RMSEs and the RETs
obtained for each simulation. The RETs within parentheses include
the time for both band separation and unmixing as indicated. These
results show comparable RMSEs for all nonlinear unmixing results
and very significant improvements in RET when using the proposed
band selection approach (about 145 times for Nb = 10).

Table 2 shows the results when the nonlinearity parameters (�
for GBM and ⇠ for PNMM) were set differently for each band. Pa-
rameter � (⇠) varied in the interval [0.5, 1] ([0.5, 0.9]) with steps of
0.05 (0.04), changing at every 42 bands. These results corroborate
the results shown in Table 1. We have also compared the results
of KKMBS with those obtained after randomly selecting the bands.
Figure 2 shows the histograms of the RMSE when selecting 10 and
100 bands. It is clear that the KKMBS leads to significantly better
results when few bands are selected.

Table 1: RMSE and RET for SNR = 21dB and random abundances.

PNMM
5 endmembers 8 endmembers

Alg. (Nb) RMSE RET (BS+HU) RMSE RET (BS+HU)
FCLS 0.1893 1 0.1243 1
SK-Hype 0.1136 2690.6 0.0762 3028.8
SK-Hype(10) 0.1114 16.0 (18.1) 0.0775 16.8 (18.7)
SK-Hype(100) 0.1150 107.7 (129.1) 0.0766 118.6 (144.8)
SK-Hype(300) 0.1139 1226.7 (1327.1) 0.0763 1331.5 (1452.7)

GBM
FCLS 0.2419 1 0.1836 1
SK-Hype 0.1080 3320.7 0.0738 3072.6
SK-Hype(10) 0.1037 24.1 (26.9) 0.0712 18.7 (21.1)
SK-Hype(100) 0.1095 157.0 (194.6) 0.0741 119.7 (148.1)
SK-Hype(300) 0.1083 1548.6 (1676.0) 0.0738 1475.2 (1597.7)

6. CONCLUSIONS

This work proposed a supervised band selection strategy to reduce
the complexity of nonlinear hyperspectral data unmixing without
compromising the accuracy of abundance estimation. Significant re-
duction in processing time was achieved in all cases tested. These
results suggest the possibility of important complexity reduction for
nonlinear HI processing algorithms without performance loss. It is
conjectured that presented performance can be further improved by
removing redundancy in the data through a more specialized band
selection algorithm. This is the topic of a work in progress.
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