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ABSTRACT

In chronobiology a periodic components variation analysis

for the signals expressing the biological rhythms is needed.

Therefore precise estimation of the periodic components is

required. The classical approaches, based on FFT methods,

are inefficient considering the particularities of the data (non-

stationary, short length and noisy). In this paper we propose

a new method using inverse problem and Bayesian approach

with sparsity enforcing prior. The considered prior law is the

Student-t distribution, viewed as a marginal distribution of an

Infinite Gaussian Scale Mixture (IGSM) defined via the in-

verse variances. For modelling the non stationarity of the ob-

served signal and the noise we use a Gaussian model with

unknown variances. To infer those variances as well as the

variances of the periodic components we use conjugate pri-

ors. From the joint posterior law the unknowns are estimated

via Posterior Mean (PM) using the Variational Bayesian Ap-

proximation (VBA). Finally, we validate the proposedmethod

on synthetic data and present some preliminary results for real

chronobiological data.

Index Terms— Periodic components estimation, In-

verse Problem, Variational Bayesian Approximation (VBA),

Kullback-Leibler divergence (KL), Infinite Gaussian Scale

Mixture (IGSM), Posterior Mean (PM).

1. INTRODUCTION

Chronobiology examines periodic phenomena in living or-

ganisms. Those cycles are known as biological rhythms. One

particular cycle of main interest is the circadian rhythm [1].

The mammalian circadian timing system consists of a mas-

ter pacemaker in the suprachiasmatic nucleus of hypothala-

mus and subsidiary molecular clock in most peripheral cell

types, being synchronized by the day-night cycle, generating

circadian (∼ 24h) oscillations. The development of in vivo

bioluminescence recording technologies enables to monitor

the circadian biomarkers in peripheral tissues during a certain

number of consecutive days, providing time series data [2].

In cancer treatment experiments, such signals presents some

particularities: as the cancer tumor grows every day until the

death of mice used in the experiments, the result is a non-

stationary signal, with an increasing trend and a very short

length. The objective of an accurate description of the pe-

riodic components variation during the evolution of cancer

tumor phase can be formulated as the need for a method that

can give an accurate estimation of the periodic components

from a limited number of data.

2. CLASSICAL FT BASED METHODS

Spectral analysis of time series is a well known subject for

a very long time. The most common methods are Fourier

Transform (FT) based methods, which are widely used in

many applications due to several obvious advantages: well

known, well understood and fast, via FFT. The periodical

phenomena was studied with different approaches in different

particular conditions, [3], [4], [5], [6], [7], using in general the

FFT based methods. Nevertheless, the particularities of the

biomedical signals considered in chronobiology experiments

show that the classical methods have certain limitations. In

particular, for short time series relative to the searched pe-

riodic components the precision given by the FFT methods

is insufficient to determine the underlying periodic compo-

nents (in the experiment considered in this article, a 96 hours

recorded signal relative to a 24 hours periodic component,

linked with the circadian clock). An important point with bi-

ological signals is that biologist use more often period than

frequency. In FFT based methods the results are presented

on an axis which is uniform in frequency. In particular, for a

four days (96h) recorded signal, beside the 24h corresponding

periodic components, the nearest amplitudes in the periodic

components vector correspond to the 32h and 19h. More gen-

eral, if the prior knowledge sets the principal period around a
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value P , in order to obtain a period vector that contains the

period P and also the periods P − 1 and P + 1, via FFT ap-

proach the signal must be observed for (P−1)(P+1) periods,
i.e. (P − 1)P (P + 1), which is beyond the real experiments.

3. INVERSE PROBLEM APPROACH AND GENERAL

BAYESIAN INFERENCE

The first step of the proposed method consists in formulating

the problem as an inverse problem:

g(tn) =

M∑

m=1

f(pm)e2πj
1

pm
tn + ǫn, n ∈ {1, ..., N} , (1)

where g(tn) represents the observed value at time tn, pm rep-

resents the mth period, f(pm) its amplitude and ǫn accounts

for errors and uncertainties. With the notation g(tn) = gn and

f(pm) = fm , defining the vectors f = [f1, f2, . . . , fM ]T ,
g = [g1, g2, . . . , gN ]T and ǫ = [ǫ1, ǫ2, . . . , ǫN ]T we obtain

the following model:

g = Hf + ǫ. (2)

In this paper we adopt a Bayesian approach, which consists

in infering f via:

p(f |g, θ1, θ2) ∝ p(g|f , θ1) p(f |θ2). (3)

A necessary extension for real world application is the case

where the hyperparameters θ = (θ1, θ2) involved are not

known and have to be estimated from the joint posterior law:

p(f , θ1, θ2|g) ∝ p(g|f , θ1) p(f |θ2) p(θ1)p(θ2). (4)

In this way we obtain an unsupervised method. The main

steps are then the assignment of p(g|f , θ1), p(f |θ2), p(θ1),
p(θ2) and then the computation of the posterior p(f , θ1, θ2|g)
to infer on f and the hyperparameters θ.

4. A HIERARCHICAL MODEL FOR SPARSITY

ENFORCING PRIOR MODEL

We propose to use a non-stationaryGaussian model where vǫi
are considered to be unknowns.

gi =
M∑

j=1

Hijfj + ǫi,

p(ǫi|vǫi) = N (ǫi|0, vǫi), i ∈ {1, 2, . . . , N} .

(5)

For having the possibility to estimate them we assign Inverse

Gamma distributions:

p(vǫi |αǫi0, βǫi0) = IG(vǫi |αǫi0, βǫi0), i ∈ {1, 2, . . . , N} .
(6)

which results to:
{

p(ǫ|vǫ) = N (ǫ|0,V ǫ)

p(vǫ|αǫ0,βǫ0) =
∏N

i=1 IG(vǫi |αǫi0, βǫi0)
, (7)

where we introduced the vector vǫ and the corresponding di-

agonal matrix V ǫ:

vǫ =
[
vǫ1 . . . vǫi . . . vǫN

]T
; V ǫ = diag[vǫ] . (8)

The likelihood p(g|f ,vǫ) is obtained using the considered

linear model (2) and the assigned distribution for the error

vector ǫ:

p(g|f ,vǫ) = N (g|Hf ,V ǫ). (9)

The proposed prior distribution is a Student-t distribution, in

order to enforce the sparsity [8] and use the prior knowledge

of reduced number of clocks in the periodic component vec-

tor. While a direct assignment of a Student-t distribution for

the prior law p(f) leads to a non-quadratic criterion when

estimating f , the Student-t distribution corresponding to the

prior law can be expressed as an Infinite Gaussian Mixture

[9], modelling the inverse variance as a Gamma distribution

or the variance as an Inverse Gamma distribution. For the

variance of f we assume a general model:

vf =
[
vf1 . . . vfj . . . vfM

]T
; V f = diag[vf ] . (10)

This gives us the possibility to propose the following prior for

the hierarchical model:
{

p(f |vf ) = N (f |0,V f )

p(vf |αf0,βf0) =
∏M

j=1 IG(vfj |αfj0, βfj0)
, (11)

where we used the notations:

αǫ0 =
[
αǫ10 . . . αǫN0

]T
, βǫ0 =

[
βǫ10 . . . βǫN0

]T

αf0 =
[
αf10 . . . αfM0

]T
, βf0 =

[
βf10 . . . βfM0.

]T
(12)

The error variance prior proposed, the likelihood (9) and the

prior (11) represents the proposed IGSM Hierarchical Model,

which can be summarized as follows:


















































p(g|f ,vǫ) ∝ |V ǫ|
−

1

2 exp

{

− 1
2
‖V

−

1

2
ǫ (g −Hf) ‖2

}

p(f |vf ) ∝ |V f |
−

1

2 exp
{

− 1
2
‖(V f )

−

1

2 f‖2
}

p(vǫ|αǫ0,βǫ0) ∝
∏N

i=1 v
−(αǫi0

+1)
ǫi exp

{

−
∑N

i=1 βǫi0v
−1
ǫi

}

p(vf |αf0,βf0) ∝
∏M

j=1 v
−(αfj0

+1)

fj
exp

{

−
∑M

j=1 βfj0v
−1
fj

}

(13)

From this hierarchical model the posterior distribution can be

obtained via the proportionality relation considered in (4):

p(f ,vǫ,vf |g) ∝ p(g|f ,vǫ) p(f |vf )

p(vǫ|αǫ0,βǫ0) p(vf |αf0,βf0).
(14)
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5. BAYESIAN COMPUTATION AND PROPOSED

ALGORITHM

For estimation of the unknowns, we consider the Poste-

rior Mean (PM). This estimator is used because it minimize

the Mean Square Error (MSE). One way to compute the

PM in this case is to first approximate the posterior law

p(f ,vǫ,vf |g) with a separable law q(f ,vǫ,vf |g):

p(f ,vǫ,vf |g) ≈ q(f ,vǫ,vf |g) = q1(f) q2(vǫ) q3(vf ),
(15)

in such a way that the approximate q(f , z, vǫ, vf ) is ob-

tained by minimizing of the Kullback Leibler divergence

KL (q : p) =
∫
q ln q

p via alternate optimization. Thanks

to the choice of the exponential families for the priors and

the conjugate priors for the hyperparameters, we obtain pro-

portionality relations between all distributions q1(f ), q2(vǫ),
q3(vf ) and certain exponential expressions. The argument

of the exponential proportional to q1(f ) can be written as a

quadratic criterion

J(f ) = ‖
(
Ṽ −1

ǫ

)1/2

(g −Hf ) ‖2+ ‖
(
Ṽ −1

f

) 1

2

f‖2, (16)

leading to the conclusion that q1(f ) is a Normal distribution.

The mean is obtained by minimizing the criterion J(f ). The
covariance matrix can be found by identification. It is then

easy to show that q1(f) = N
(
f |f̂PM , Σ̂

)
, with:





f̂PM =
(
HT Ṽ −1

ǫ H + Ṽ −1
f

)−1

HT Ṽ −1
ǫ g

Σ̂ =
(
HT Ṽ −1

ǫ H + Ṽ −1
f

)−1

.

, (17)

q2i(vǫi) are InverseGamma distributions, q2i(vǫi) = IG (vǫi |αǫi , βǫi)
with





αǫi = αǫi0 +
1
2

βǫi = βǫi0 +
1
2

[
H iΣ̂HT

i +
(
gi −Hif̂PM

)2
] (18)

where H i is the line i of the matrix H . Finally, q3j(vfj ) =
IG

(
vfj |αfj , βfj

)
with:





αfj = αfj0 +
1
2

βfj = βfj0 +
1
2

(
f̂j

2

PM + Σ̂jj

) (19)

Knowing that q2i(vǫi) and q3j(vfj ) are Inverse Gamma dis-

tributions and using
〈
x−1

〉
IG(x|α,β)

= α
β , then we obtain the

following forms for Ṽ −1
ǫ and Ṽ −1

f involved in the expression

of the two parameters of the Normal distribution q1(f ):

Ṽ −1
ǫ =




αǫ1

βǫ1

. . . 0 . . . 0

...
. . .

...
. . .

...

0 . . .
αǫi

βǫi

. . . 0

...
. . .

...
. . .

...

0 . . . 0 . . .
αǫN

βǫN




; Ṽ −1
f =




αf1

βf1

. . . 0 . . . 0

...
. . .

...
. . .

...

0 . . .
αfj

βfj

. . . 0

...
. . .

...
. . .

...

0 . . . 0 . . .
αfM

βfM




(20)

These steps lead to an iterative algorithm described as it fol-

lows: (a) Initialization; (b) Use equation (17) to compute

f̂PM , Σ̃; (c) Use equation (18) to compute α̃ǫ, β̃ǫ; (d) Use

equation (19) to compute α̃f , β̃f . The following scheme sum-

marizes the proposed algorithm:

f̂PM =
(
HT V̂ −1

ǫ H + V̂ −1
f

)−1

HT V̂ −1
ǫ g

Σ̂ =
(
HT V̂ −1

ǫ H + V̂ −1
f

)−1

αǫi = αǫi0 + 1
2

βǫi = βǫi0 + 1
2

[
HiΣ̂HT

i +
(
gi −H if̂PM

)2
]

αfj = αfj0 + 1
2

βfj = βfj0 + 1
2

(
f̂j

2

PM + Σ̂jj

)

V̂
−
1

ǫ
=

d
ia
g
[ α

ǫ
i

β
ǫ
i

]

V̂
−
1

f
=

d
ia
g
[ α

f
i

β
f
i

]

For initializing the algorithm, one possible choice is assign-

ing values for the following parameters:
{
α
(0)
fj

, β
(0)
fj

}
, j ∈

{1, 2, . . . ,M} representing V̂ −1
f

(0)

and
{
α
(0)
ǫi , β

(0)
ǫi

}
, i ∈

{1, 2, . . . , N} representing V̂ −1
ǫ

(0)

This choice for the ini-

tialization procedure is sufficient, in the sense that the con-

sidered parameters from above represent all the necessary in-

formations for starting the first iteration of the algorithm and

computing all other parameters of the algorithm correspond-

ing to step zero, i.e. f̂
(0)

PM and Σ̂
(0)

. For the parameters α
(0)
ǫi

, β
(0)
ǫi and α

(0)
fj

, β
(0)
fj

, we consider the following initialization:

α(0)
ǫj = αǫj0 , β(0)

ǫj = βǫj0 , α
(0)
fj

= αfj0 , β
(0)
fj

= βfj0

(21)

A natural choice in this case is Non Informative Prior Law

(NIPL). The Inverse Gamma Distribution is weak for param-

eters α → 0 and β → 0, so one possible choice is αǫj0 =
βǫj0 = 0.001 and αfj0 = βfj0 = 0.001.

6. SIMULATIONS

For validating the proposed method, first we work with some

simulated data. In the real case the theoretical f is unknown,
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so the only possible comparison is between the available g

(representing the real data) and the estimated ĝPM (obtained

via the reconstruction done with the estimated f̂PM ). After

validating the method, we present the results corresponding

to real data, i.e. signals from chronobiology experiments.

6.1. Synthetic data

An important step for validating the method is to consider sig-

nals with known corresponding periodic components, which

gives the possibility to compare f and the estimated f̂PM .

We consider the following protocol: (a) Consider a sparse

amplitude periodic components vector f , Figure 1,(a). For

the simulations used in this article, we analysed a periodic

components for the interval associated with the circadian do-

main and the possible harmonics, i.e. the interval [8, 32], with
one hour precision; (b) Compute the corresponding signal g0
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Fig. 1. Periodic Components f and the corresponding theo-

retical signal g0 = Hf

(4 days length), Figure 1, (b). The matrix operator H used

is a real matrix obtained in the same manner as the Fourier

TransformMatrix using the considered periods and is defined

as a sum of a sine and cosine; (c) Generate a noisy signal
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Fig. 2. Noisy Signal g = Hf + ǫ (a) and the corresponding

FFT Spectrum

g (input for the proposed algorithm) by adding some noise

(SNR 5dB), Figure 2, (a) and its corresponding spectrum ob-

tained via Fast Fourier Transform, Figure 2, (b). (d) Use the
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Fig. 3. Periodic components estimation via zero padding and

L2 regularization

noisy signal g to estimate the periodic components via the

zero padding method Figure 3, (a) and via L2 regularization

method Figure 3, (b). (e) Compare the periodic components
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Fig. 4. (IP:Student-t) Method: periodic components recon-

struction and the covariance matrix

vector (f ) with the estimated f̂PM one via proposed method,

Figure 4, (a). The proposed method also indicates the vari-

ances; the covariance matrix is presented in Figure 4, (b).

(f) Compare the original signal g0 and the reconstructed one
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Fig. 5. (IP:Student-t) Method: signal and noisy signal recon-

struction

ĝPM , Figure 5, (a) and the noisy signal g with the recon-

structed one ĝPM . As a conclusion of these simulations, we

can see that neither FFT based methods (with or without zero

padding) nor Least Squares (LS) or even the quadratic regu-

larization methods can give satisfactory results. The proposed

method seems to be appropriate for this application. We con-

sider another sparse PC vector, and we present the estimation

corresponding to the proposed method and L1 regularization

method, LASSO, using as input the corresponding noisy sig-

nal, with the SNR=5dB.
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6.2. Real data

For this section we consider a real signal expressing the pho-

ton absorption. The experiment was realized over mice,

investigating the tumor clock gene expression in freely

moving mice along the course of tumor growth using RT-

Biolumicorder units (Lesa-technology SA, Switzerland). The

hepatocarcinoma cells with bioluminescent clock gene Per2

(Hepa1-6Per2::luc) were inoculated subcutaneously in mice.

The tumor photon emission was recorded with a photomulti-

plier tube in mice. The question addressed by the biologists

is the stability of the periodic components so for every four
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Fig. 7. (IP:Student-t) Method vs. FFT: Real data

days of the signal we apply the proposed method and we

compare the results with the FFT spectrum. From a 10 days

length signal we present three consecutive windows (4 days

length, 1 day shift) in Figure 7. On the left column are

presented the windows, in the center the corresponding peri-

odic components estimated via FFT and on the right column

the periodic components estimated by the proposed method.

Figure 8 shows another three consecutive windows and the
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Fig. 8. (IP:Student-t) Method vs. FFT: Real data

corresponding periodic component vector estimation for FFT

and the proposed method.

7. DISCUSSIONS AND CONCLUSIONS

We have presented a new method that can estimate the peri-

odic components of short signals. In the synthetic data sub-

section 6.1 we showed the limitations of the FFT based meth-

ods. The zero padding, L2 and L1 regularization methods are

also providing inaccurate estimations. The proposed method

is accurately estimating the periodic component vector. For

the example presented in Figure 4,(a) the reconstruction error,

is
‖
̂f

PM
−f‖2

‖f‖2
= 0.00874. The residual error for the recon-

structed signal ĝPM and ĝ, Figure 5,(b) is consistent with the

signal to noise ratio of 5 dB. The proposed method is provid-

ing also the covariance matrix for f , i.e. the variances for the

estimated amplitudes. For the real data, Figure 8 shows how

the proposedmethod is able to detect the variability of the pe-

riod in the signal, by precisely estimating the positions of the

non-zero periodic components for each window. The results

obtained via the FFT method can not detect this variability.

Our model makes no assumptions concerning the number of

non-zero picks, allowing the visualization of all the periodic

phenomena, Figure 7.
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