23rd European Signal Processing Conference (EUSIPCO)

VECTORIZATION OF BINAURAL SOUND VIRTUALIZATION
ON THE ARM CORTEX-A15 ARCHITECTURE

Jose A. Belloch*, Alberto Gonzdlez!, Francisco D. Igual*, Rafael Mayo*, Enrique S. Quintana-Orti*

*Depto. de Ingenieria y Ciencia de Computadores, Universitat Jaume I, Castellén, Spain
tiTeAm, Universitat Politecnica de Valéncia, Valencia, Spain
'Depto. de Arquitectura de Computadores y Automética, Universidad Complutense de Madrid,
Madrid, Spain

ABSTRACT

Today’s mobile devices are equipped with low power pro-
cessors featuring SIMD (single-instruction, multiple-data)
floating-point units which can operate with multiple data
units concurrently. This is the case, e.g., of the ARMv7
architecture, which integrates the (NEON) Advanced SIMD
extension, a combined 64- and 128-bit SIMD instruction
set for standardized acceleration of media and signal pro-
cessing applications. In this paper we target the efficient
implementation of binaural sound virtualization, a heavy-
duty audio processing application that can eventually require
16 convolutions to synthesize a virtual sound source. For this
application, we describe a data reorganization that allows to
exploit the 128-bit NEON intrinsics of an ARM Cortex-A15
core. As a result, our new SIMD-accelerated implementation
is capable of reproducing up to 60 sound sources under real-
time conditions, compared with the 40 sound sources that can
be handled by the original code.

Index Terms— Audio Processing, Spatial Sound, Low
Power Processors, ARMv7 and ARM Cortex-A15, NEON In-
trinsics.

1. INTRODUCTION

In the era of multimedia, smart phones and tablets, low power
processors play a crucial role for a large volume of appli-
cations that is rapidly growing. Among these specialized
devices, the ARM Cortex-A15 [1] is an implementation of
ARMYV7 architecture that was conceived as an embedded
processor for smart phones, among other mobile appliances.
In particular, each core of this processor integrates a 128-
bit SIMD (single-instruction, multiple-data) engine, called
NEON, that can significantly increase performance and re-
duce energy consumption for multimedia and signal process-
ing applications. From the programmer’s perspective, data
parallelism can be exploited by means of specific SIMD in-
structions, or alternatively with vector intrinsics to increase
ease of programming.

978-0-9928626-3-3/15/$31.00 ©2015 IEEE

1626

Fig. 1. Binaural sound virtualization intends to reproduce
moving sound sources.

One important application in signal processing is binau-
ral sound virtualization, where the goal is to leverage a spa-
tial audio system, based on headphones, to allow a listener
perceive the virtual position of a sound source [2]. This effect
is obtained by processing sound samples through a collec-
tion of special filters that shape the sound with spatial infor-
mation. In the frequency domain, these filters are known as
Head-Related Transfer Functions (HRTFs), and the response
of HRTFs describes how a sound wave is affected by proper-
ties of the individual’s body (e.g. pinna, head, shoulders, neck
and torso) before the sound reaches the listener’s eardrum [3].
From the computational perspective, the problem that under-
lies a headphone-based application quickly grows in cost with
the number of sound sources that have to be handled (i.e.,
reproduced and moved) in real time while avoiding acoustic
artifacts, see Figure 1.

In this paper we introduce a tailored implementation of
binaural sound virtualization that exploits the NEON engine
capabilities integrated in the ARM Cortex-A15 core to extract
data parallelism, delivering a remarkable increase in the num-
ber of moving sound sources that can be handled. The key
to this development is a reorganization/duplication of the au-
dio data in memory to leverage the SIMD capabilities of the



23rd European Signal Processing Conference (EUSIPCO)

ARM-NEON floating-point units, by appropriately employ-
ing vector intrinsics in the code.

The rest of the paper is structured as follows. In Sec-
tion 2 we briefly discuss some related work; in Section 3 we
introduce the spatial sound application; and in Section 4 we
shortly review the ARM NEON intrinsics. Next, in Section 5
we present our specialized implementation of the binaural au-
dio virtualization code and evaluate its performance; and Sec-
tion 6 summarizes our work into a few concluding remarks.

2. RELATED WORK

ARM processors have been previously applied in a number
of audio/video signal processing scenarios. In [4], the au-
thors accelerate various image processing algorithms using
an ARM architecture, and image processing is optimized us-
ing NEON intrinsics in [5]. ARM-based platforms have also
been used in [6] to accelerate the Audio Video coding Stan-
dard (AVS) and different types of IIR filters have been imple-
mented for audio filtering using NEON extensions in [7].
Our work differs in that none of the previous efforts has
tackled filtering algorithms in the frequency domain, which
requires Fourier transforms as well as complex arithmetic.

3. SPATTAL AUDIO ON HEADPHONES

Spatial effects can be achieved by convolving natural mono-
phonic sounds that are recorded in an anechoic environment
with a pair of filters that add spatial information from specific
positions in the space to the audio wave.

For headphones, one filter per ear specifies each virtual
position, known as head-related impulse response (HRIR) fil-
ter in the time domain and HRTF filter in the frequency do-
main. The HRIRs corresponding to position (6, ¢, ) in the
time domain are denoted as h, (6, ¢, ) and hy(6, ¢, r) for the
right and left ear, respectively.

HRTFs are usually obtained via measurement combined
with extrapolation or numerical simulation [8]. There are
multiple public samples of HRTFs or HRIRs. In our case, we
leverage the HRIR measures from [9]. This HRIR database
has azimuth and elevation resolutions, denoted by A6 and A¢
respectively, representing the minimum separation in degrees
between two positions of the database in azimuth and eleva-
tion. For our HRIR database, the resolution for both azimuth
and elevation is 15°, and the distance of the sound source to
the center of the head is fixed to r=1.95 m. Moreover all
HRIR filters are windowed to a length of 512 coefficients.

Let us employ xp,g to denote an input-data buffer com-
posed of L audio samples from a sound source x. Given a
system composed of M sources, the input-data buffer xp, g,
represents the buffer of L samples from source ¢ € [0, M —1].
The output-data buffers both for the left and right ears, ypus,

1627

(el’ 2) W Wy

Ub

e o
(9\7 1) W Wa (92? 1)

Fig. 2. The star represents the position intended to be synthe-
sized in the elevation plane ¢ and in the azimuth plane 6 . This
position is synthesized by combining the nearby azimuth and
elevation positions using the appropriate weighted factors.

is then given in the time domain by

M—-1

Ybuft = Z (hy (05, di) * Xpusri)- (1

=0

where * denotes the convolution operator.

3.1. Virtualization of sound source Movements

The number of filters in the database constrains the virtual
positions which can be rendered. One complex problem is
the synthesis of sound for virtual positions that do not belong
to the database. An additional difficulty occurs when sound
source moves, which in practice requires the application of a
new filter (i.e., a different HRIR). In particular, if the switch
between HRIRs is not properly implemented, this may yield
multiple audio clipping effects [10].

In order to address these problems, we carry out 16 con-
volutions for each moving sound source, as discussed in [11].
Concretely, two filters correspond to the left/right channels,
and four more are required to synthesize positions that are not
available in the database. Equation 2 and Figure 2 shows how
the interpolation is implemented. There, {w4,wp, we, wp}
correspond to weighted factors.

= Wp - WB - Ybus, (01,1

+ Wp WA Ybuff, (927 ¢1) )
+ we - wB - Youst, (01, 92)

+  we - wa - Youst; (02, d2).

Youst; (0s, ¢s)

In addition, two more filtering are necessary for the vir-
tualization of source movement, which is carried out by
smoothly varying the virtual positions of the source over
time. For example, assume the sound source z; moves from
position A: (fsa, ¢sa) to position B: (6sp, psp). We then



23rd European Signal Processing Conference (EUSIPCO)

apply a fading, which is a gradual increase in the sound fil-
tered by position B while the sound filtered by position A
alternates in the same proportion. To this end, the current
input-data buffer xy,,#, must be computed for both positions,
and then the result of both computations must be multiplied
element-wise by two fading vectors, say f and g. Finally, the
output-data buffer yy,.g, is obtained by summing the results
from the previous multiplications element-wise; i.e.,

Youti(0s,¢s) = ((yburr,(0sB,¢sB) @ f) 3)
@ ((ybust;(0sa, dsa) ® g)

where ® and & respectively represent the element-wise mul-
tiplication and addition operators.

4. EXPLORING THE ARM CORTEX-A15

The ARMvV7 architecture and instruction set architecture
(ISA), implemented in the Cortex-A15 processor among oth-
ers, include support for a set of SIMD floating-point instruc-
tions that can apply the same operation on multiple packed
elements of the same type and size in parallel. In order to
support this functionality, the Cortex-A15 processor com-
prises a number of 128-bit SIMD registers, each of which can
store up to two 64-bit (double-precision) float elements, four
32-bit (single-precision) float elements, or eight 16-bit inte-
gers. Each piece of data stored in a SIMD register is usually
referred to as a lane. Typical SIMD instructions supported
by ARM processors include arithmetic and logical operations
(e.g. addition, multiplication, multiply-accumulate, multiply-
subtract, subtraction, comparison, absolute difference) and
data movement instructions (e.g., load lanes from memory
into a SIMD register, and store lanes from a SIMD register
into memory).

The implementation of the SIMD technology in the
ARMV7 architecture comes in the form of a separate vec-
tor floating-point unit, called NEON. The vector register set
in the NEON engine and the general-purpose register set in
the ARM core are independent. In order to increase ease
of programming, SIMD operations can be cast into intrinsic
functions that are directly translated by the compiler into
NEON instructions, operating in parallel over different lanes
of a SIMD register.

The ARMv7 NEON intrinsics support all the function-
ality of the NEON instruction set, including the definition
of vector data types [12] to place data into vector registers.
These types are named as “type”“size”x“number of lanes” _t.
Some datatype examples include int8x8_t, int8x16_t,
intlé6x4_t, int32x4_t, int64d4x2_t, float32x_t,
float32x2 t,and float32x4_t.

5. IMPLEMENTATION AND PERFORMANCE

The convolution operations in our implementation of the
binaural audio virtualization are carried out by using the

1628

overlap-save technique with a 50% overlap in the frequency
domain [13]. This means that the convolution is transformed
into an element-wise multiplication of two vectors, of size
2L, with complex entries. Furthermore, combinations of
16 convolutions must be carried out per each sound source.
Thus, the operations that are executed by a headphone-based
spatial audio application that reproduces M sound sources
can be summarized as follows:

1. M FFTs of size 2L.

2. 16M element-wise multiplications between two complex
vectors of size 2L, see (2), and 4 element-wise accumula-
tion of 4 M vectors of size 2L.

3. Four inverse FFTs of size 2L.

4. Four element-wise multiplications between two real vec-
tors of size L, see (3).

5. Two element-wise sums between two real vectors of
size L.

Note also that only the input-data buffers xy,,g; must be trans-
formed to the frequency domain since the HRTF filters are
already in the database.

Stages 1 and 3 require the use of a FFT library and, to
this end, we selected the ad-hoc implementation the FFTW
library [14] for ARM architectures. Stages 2 and 4 consist of
straight-forward element-wise operations and can be imple-
mented as simple loops, to be optimized by the target com-
piler.

In order to improve this initial implementation, we per-
formed a series of preliminary test to expose the critical path
of the algorithm. For this purpose, we executed this imple-
mentation using different numbers of sources (1/) and found
that about 90% or more of the execution time corresponds to
stage 2.

5.1. NEON intrinsics for the element-wise multiplications
of complex vectors

The FFTW library processes complex data with interleaved
real and imaginary parts; see, e.g., Figure 3. In this particular
example, the two elements are stored in memory as four 32-
bit £1oat numbers. In order to exploit data parallelism, we
must use SIMD registers and the datatype float32x4_t
provided by the NEON intrinsics to accommodate them from
the source code.

Let us consider three vectors H, A and C, of the same
size L, with their entries disposed as in Figure 3. The
element-wise multiplication entailed by stage 2 of the ap-
plication combines (the real and imaginary parts of) H and



23rd European Signal Processing Conference (EUSIPCO)

Complex
value 0

Complex
value 1

Real Real
Part Part
Imaginary Imaginary
Part Part

Fig. 3. Conventional storage of a complex vector with two
entries.

A to produce (the real and imaginary parts of) C as follows:

cjo] = H[0]-Aj0] — H[1] A[1]
Cl1] = H[0]-Al1] + H[J-Alo]
Cl2) = H[2]-Al2] — H[3-Al3]
C[3] = H[2]-A[3] + H[3] A[2]

Unfortunately, when the vectors are stored in memory using
this conventional pattern, it is difficult to directly use NEON
intrinsics efficiently.

In practice, H contains the coefficients of the HRTF filters
in memory, and its entries are not modified during the filter-
ing. Typically, loads from consecutive (and aligned) mem-
ory addresses into vector registers attain a better exploita-
tion of the available bandwidth. Therefore, we can acceler-
ate the loading process of H into vector registers by a priori
reorganizing its contents into two vectors (with some dupli-
cated data): Hr = {H[0], H[0], H[2], H[2], ...} for the real
parts and Hi = {H[1], H[1], H[3], H][3], ...} for the imagi-
nary ones.

With this modified layout, an efficient data-parallel imple-
mentation of the element-wise complex multiplication can be
obtained by means of a sequential application of two NEON
intrinsics: vmulqg_f 32 which multiplies two vector registers
composed of four f1loats element-wise; and vmlag_ f£32,
which multiplies and accumulates the result into a third SIMD
register.

Moreover, as vector A contains the audio samples of a
current input-data buffer xp,¢ in the frequency domain, we
employ two SIMD registers (say A1 and A2) before applying
the corresponding multiplications:

// Load A[O
Al=v1ldlg_f£32(2);

3] into Al

//Reorganize Al into A2 as
//A2(0,1,2,3] = A2[1,0,3,2]
A2=vsetqg_lane_f32 (vgetqg_lane_f£f32(Al,1),A2,0);
A2=vsetqg_lane_f32 (vgetqg_lane_£32(A1,0),A2,1);

1629

A2=vsetq_lane_£32 (vgetqg_lane_f32(Al,3),A2,2);
A2=vsetqg_lane_f32 (vgetqg_lane_f£f32(Al,2),A2,3);

These registers will be reused 16 times (one per convolution),
so the penalty of the rearrangement process is amortized. Be-
sides, three additional SIMD registers (Hreal, Himag and
C) are required to carry out the element-wise multiplications,
whose values will change during the execution of the 16 con-
volutions. Concretely, the NEON intrinsic functions that we
use for the convolution are:

// Load real and imaginary part of H
Hreal=vldlqg_ f32 (Hr);
Himag=vldlqg_ £f32 (Hi);

// Compute Equation (4)
C=vmulqg_ f32 (Hreal,Al);
C=vmlaqg_f32(C, A2, Himaqg);

where vgetq _lane_f32/vsetq _lane_f£322 gets/sets
a specific lane from/to a SIMD register, and v1dlqg_ £32
loads a set of (four) consecutive f1loats from memory to a
given SIMD register.

5.2. Performance evaluation

We tested our original and vectorized implementations on a
single ARM Cortex-A15 core, running at 1.6 GHz, taking as
a reference the time offered by an audio card from a mobile
device. This concrete audio device provides 1,024 samples
per channel (L = 1,024) every 23.22 ms (for a sample fre-
quency f, = 44.1 KHz), which we call buffer time t,,,g. As-
suming that our spatial audio application has to synthesize M
sound sources, we define ¢, as the processing time, since
the M input-data buffers are available till both output-data
buffers (for the right and left ear) are totally processed. Thus,
the spatial audio application operates in real time provided
tproc < tpuft-

The objective of the following experiment is to assess
the largest number of sound sources, M™2*, which can be
reproduced in real time on the target architecture using the
proposed implementation. In order to determine this fac-
tor, we executed the application for an increasing number
of sources, and compared the execution time #,,,. With the
threshold ty,,s. We note that, in case tpr0c > thusr, the appli-
cation does not operate in real time, but can still be considered
as an off-line technology.

Figure 4 illustrates the evolution of tp,.c as a function of
the number of sound sources for the original (non-vectorized)
implementation and the optimized version with intrinsics.
These results demonstrate that, using NEON intrinsics, it is
possible to handle up to 60 sound sources simultaneously
with a single ARM Cortex-A15 core. Compared with this
result, the original implementation could only reproduce up



23rd European Signal Processing Conference (EUSIPCO)

Processing Time

30

—o— NEON Intrinsics L@/
—4— NO NEON Intrinsics
25+ |—— Real Time
Tourr (ms)
20F
15t
ey
10
5 L
0 . . . . . . .
0 10 20 30 40 50 60 70 80

Fig. 4. Execution time of the binaural audio virtualization
application implemented with and without NEON intrinsics.
The horizontal line at ¢,,5 marks the threshold between a
real-time application and an off-line technology.

to 40 sound sources in real-time.

6. CONCLUSIONS

Tablets and smart phones are nowadays equipped with low
power architectures such as, e.g., the ARMv7 and ARMvS
series, with powerful SIMD units to exploit the ample data-
parallelism that characterizes most media and signal process-
ing applications.

In this paper, we have reimplemented an audio processing
application that reproduces spatial sound sources in a head-
phone setting (binaural audio virtualization) and allows the
user to interact with their position in real time. In particu-
lar, our optimized implementation employs the NEON intrin-
sic functions to satisfy the high computational demands of
this concrete application, fully leveraging the NEON vector
floating-point unit present in the ARMv7 architectures. The
experimental evaluation on ARM Cortex-A15 core shows that
the vectorized code can handle up to 60 sound sources in real
time, which is a 33% increase over the implementation that
does not utilize the NEON engine.

7. ACKNOWLEDGEMENTS

The researchers from Universidad Jaime I were supported
by the CICYT project TIN2011-23283 of the Ministerio de
Economia y Competitividad and FEDER.

REFERENCES

[1] “Arm neon,” http://www.arm.com/.,
February 23).

(accessed 2015

1630

(2]

[4]

(5]

(6]

[7]

(8]

[9]

(10]

(11]

[12]

[13]

[14]

V.R. Algazi and R.O. Duda, “Headphone-based spatial
sound,” IEEE Signal Processing Magazine, vol. 28, no.
1, pp. 3342, 2011.

Jens Blauert, Spatial Hearing - Revised Edition: The
Psychophysics of Human Sound Localization, The MIT
Press, 1996.

G. Mitra, B. Johnston, A.P. Rendell, E. McCreath, and
Jun Zhou, “Use of simd vector operations to acceler-
ate application code performance on low-powered arm
and intel platforms,” in I[EEE 27th International Paral-
lel and Distributed Processing Symposium Workshops
PhD Forum (IPDPSW), May 2013, pp. 1107-1116.

E. Welch, D. Patru, E. Saber, and K. Bengtson, “A study
of the use of simd instructions for two image processing
algorithms,” in Western New York Image Processing
Workshop (WNYIPW), Nov 2012, pp. 21-24.

Ronggang Wang, Jie Wan, Wenmin Wang, Zhenyu
Wang, Shengfu Dong, and Wen Gao, “High definition
ieee avs decoder on arm neon platform,” in 20th IEEE
International Conference on Image Processing (ICIP),
Sept 2013, pp. 1524-1527.

S.B. Holgersson, “Optimising iir filters using arm
neon,” M.S. thesis, University of Danemark, 2012.

Yuvi Kahana and Philip A. Nelson, “Numerical mod-
elling of the spatial acoustic response of the human
pinna,” Journal of Sound and Vibration, vol. 292, no.
1-2, pp. 148 — 178, 2006.

“Listen = HRTF  database,” online  at:
http://recherche.ircam.fr/equipes/salles/listen/index.html.

Akihiro Kudo, Haruhide Hokari, and Shoji Shimada,
“A study on switching of the transfer functions focusing
on sound quality,” Acoustical Science and Technology,
vol. 26, no. 3, pp. 267-278, 2005.

J. A. Belloch, M. Ferrer, A. Gonzalez, F.J. Martinez-
Zaldivar, and A. M. Vidal, “Headphone-based virtual
spatialization of sound with a GPU accelerator,” J. Au-
dio Eng. Soc, vol. 61, no. 7/8, pp. 546-561, 2013.

“Armv7 neon data types,”
https://gcc.gnu.org/onlinedocs/gcc-4.6.1/gcc/ARM-
NEON-Intrinsics.html., (accessed 2015 February
26).

A. V. Oppenheim, A. S. Willsky, and S. Hamid, “Sig-
nals and systems,” Processing series. Prentice Hall, 2nd
edition, 1997.

“Fast Fourier Transform West,” http://www.fftw.org/,
(accessed 2015 January 11).



