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ABSTRACT

In this paper we address the compressive reconstruction of
images from a limited number of projections in order to re-
duce the X-ray radiation dose in Computed Tomography (CT)
while achieving high diagnostic performances. Our objective
is to study the feasibility of applying message passing Com-
pressive Sensing (CS) imaging algorithms to CT image recon-
struction extending the algorithm from its theoretical domain
of i.i.d. random matrices. Exploiting the intuition described
in [1] of employing a generic denoiser in a CS reconstruc-
tion algorithm, we propose a denoising-based Turbo CS al-
gorithm (D-Turbo) and we extend the application of the de-
noising approximate message passing (D-AMP) algorithm to
partial Radon Projection data with a Gaussian approximation
of the Poisson noise model. The proposed CS message pass-
ing approaches have been tested on simulated CT data using
the BM3D denoiser [2] yielding an improvement in the re-
construction quality compared to existing direct and iterative
methods. The promising results show the effectiveness of the
idea to employ a generic denoiser Turbo CS or message pass-
ing algorithm for reduced number of views CT reconstruction.

Index Terms— Computed Tomography, Radon Trans-
form, Approximate Message Passing, Turbo Compressed
Sensing

1. INTRODUCTION

Nowadays, X-ray computed tomography (CT) is widely used
as a 3-D imaging technique in materials science or for med-
ical applications such as the reconstruction of inner organs
of patients from an extensive collection of X-ray projection
images. In medical imaging one of the main challenges is to
reduce the X-ray dose absorbed by the patient together with
the scan time while obtaining high quality images at a min-
imum radiation dose level. The reduction of projection data
leads to benefits such as reducing patient dose, reducing scan
time, and improving time-resolution in CT. Classical recon-
struction algorithms such as filtered back-projection (FBP)
require the linear system to be sufficiently over-determined,
i.e. the number of angles needed is more than the num-
ber of pixels along a line. It is well-known that traditional
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FBP-based reconstruction methods produce significant ar-
tifacts when applied to a limited number of angles [3], [4]
and algorithms incorporating prior information on the sam-
ple are needed to improve the quality of the reconstruction.
Various approaches have been proposed, from Algebraic Re-
construction Technique (ART) [5] to convex relaxation [6]
and fast iterative FBP. Compressed sensing (CS) has sparked
a tremendous amount of research activity, because it performs
image processing using fewer samples. Many compressive
imaging algorithms have been proposed in the literature,
however existing compressive imaging algorithms may ei-
ther not achieve good reconstruction quality or not be fast
enough. Therefore, in this paper, we focus on a variation of
fast algorithms based on graphical models belonging to the
family of message passing to improve over the prior art. AMP
is an iterative signal reconstruction algorithm that performs
scalar denoising within each iteration, and proper selection of
the denoising function used within AMP is needed to obtain
better reconstruction quality [7]. The state evolution of AMP
with Gaussian sensing matrices is shown to be consistent
with that derived using the replica method. However, the
situation is different in the CT context since the distortion is
not Gaussian and the entries of the partial Radon transform
are not random.

1.1. Main Contribution

The objective of this paper is to develop message passing
algorithms for image reconstruction in the context of sparse
projection measurements CT. In particular, we exploit both
the intuition in [1] to use a generic denoiser in the AMP
framework (D-AMP) with the Radon operator. To tackle the
problem that the Radon in a non tight operator, a precondi-
tioning step within the D-AMP is performed [8]; as a specific
denoiser the BM3D algorithm has been used. Furthermore,
we incorporate in the preconditioner a weighted matrix to
represent the popular Gaussian approximation of the Poisson
noise model in CT [9]. Finally an alternative message passing
algorithm D-Turbo CS is proposed which is based on the idea
of using a specific denoiser in the Turbo CS framework [10].

The paper is organised as follows. In the next section
a review of the Radon projection forward model for paral-
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lel beam X-ray CT is described. The extension of denois-
ing approximate message passing applied with the Radon op-
erator in described in Section 4. In Section 5 the proposed
denoising-based Turbo CS (D-Turbo) framework with partial
Radon Matrix measurement is described. Finally, Section 6
presents a simulated evaluation and comparison of the denois-
ing message passing algorithms on a CT scan.

2. FORWARD RADON MODEL

The goal of CT is to determine the attenuation coefficients
1(F) € Ly(R2), where § represents the spatial location.
The mono-energetic X-ray CT projection process is modelled
by the Beer’s law:

—
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where ; is the mean detected intensity, [ is the initial inten-
sity of a X-ray beam, ¢; is the room background and mean
scatter radiation which will not taken into account in the fol-
lowing formulation, L; is a line path of the ray through the
object and Ny is the total number of rays.

One X-ray CT projection provides N, line integral values of
u(?) for each ray, which are equivalent to the following for-
ward model with post-log data y; of the mean measurement
I i

I
i L;

Under the assumption of parallel-beam the operator coincides
with the Radon projection P : La(R?) — Lo([0, 7] x R):

P {a(F)} (0.6) = /
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with & = (s1,82) € R%. Considering the Fourier slice theo-
rem using the Radon Operator is equivalent to

P{x(F)}(0,6) = /]R2 X (Ecosf, Esinh)e®™ 04 (4)

where X (€ cos 0, £ sin ) is the 2D Fourier transform of z(s)
in polar coordinates. The Radon operator is a non tight frame
so according to the Filtered Back Projection theorem [11] we
need to precondition the operator P*VP = 7 where V is the
operator that applies the ramp filter to each projection

V=T (F 'D(¢)F) (5)

where 7 ® JF; takes the 1D DFT of each projection view of
the sinogram and D defines the diagonal polar Fourier-space
operator. The Non Uniform Fourier Transform (NUFFT) [12]
has been exploited to evaluate a discretised version of (3).

To develop a Fourier-based projector for fan-beam geome-
tries, we can use the well-known relation between parallel-
beam and fan-beam coordinates r = Rsinf3, 0 = a +
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where R is the source to rotation center distance, « the angle
of the source relative to one axis, and /3 is the angle of the ray
relative to the source.

The statistical X-ray CT noise model consists in modelling
the pre-log observation data by a Poisson model of a discre-
tised version of (1):

}/i ~ POiSSOn{gi} = Poisson {Ioe(_ fLi l‘(?)dl) }

To process the reconstruction, it is necessary to discretise a
continuous object 1($') by a basis function expansion. The
image domain discretization leads to the following forward
projection for (2):

I Ny Ng
0 -
yi = log <I7,) ~ jE:I T /L 5 (8)dl = jEleijxj = [Pa];

where v; (?) is the basis function. In this work we are inter-
ested in the CT imaging using a limited number of projections
therefore, given the input N x N pixel image x, the problem
is equivalent to the undetermined linear system where we de-
fine the sensing matrix as the partial Radon Transform matrix,
where the full matrix has NV columns equal to the number of
detectors, & = SP € RM*N and M rows (M < N), with S
the subselection matrix y = ®x + w where w is the additive
noise with Poisson distribution.

The post-log observation data y; has been modelled by a
weighted linear additive Gaussian noise model [13], which
comes from quadratically approximating the negative log
likelihood

where the noise variance is 07 = y;.

3. DENOISING APPROXIMATE MESSAGE PASSING

D-AMP is an iterative signal reconstruction algorithm based
on a graphical model approximation; consider the model of y
where the signal distribution follows x; ~ fx and the noise is
i.i.d. Gaussian. The entries of the measurement matrix ® are
i.id. N(0, ﬁ) distributed, and thus the columns of the matrix
have unit /o-norm, on average. D-AMP proceeds iteratively
according to

xt-‘rl — D(;.t (‘I’T’f‘t +$t)
1
Tt = y— @l‘t + Ert_ngt (@Trt—l + l‘t_l)
2 7113
= 5 6
(") - ©

where R = M/N represents the measurement rate, D« (-)
is a denoising function at the ¢-th iteration and D, denotes
the divergence of the denoiser with respect to the estimated
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noise level o* which is well approximated using Monte Carlo
technique [1]. At each iteration D-AMP generates an esti-
mate for x that can be represented as the true = corrupted by
Gaussian noise, i.e. z'T! ~ z + v where v! ~ N(0,07).
The so called Onsager term in r¢ yields the D-AMP to behave
like a self-tuned algorithm. The power of D-AMP is that it
can exploit a huge number of image denoisers to enhance the
reconstruction performance.

4. RADON TRANSFORM IN D-AMP

We now show the image denoising can be performed within
D-AMP with the Radon operator. The intuition comes from
using D-AMP incorporating the filtered back projection
within each iteration as in other iterative FBP algorithms.
The convergence of AMP algorithm depends on the singular
values of the matrix @ [8]. Thus, to speed up the convergence
of the algorithm, one way is to precondition the system. Us-
ing the forward model (1) it has been shown that the singular
value decomposition of the Radon matrix follows the ramp
function in the frequency domain. This property has been
exploited to incorporate the preconditioner in the D-AMP it-
erative algorithm. Furthermore to account for the noise model
we also incorporate the weight matrix, W = diag{w;}, into
the preconditioner.

Let 9, = (WV)zz where V is the discrete form of Eq.
(5). Therefore the compressed measurement becomes y =
SP(VW) ™29, + 2z, where SP(VW)~2 is our new matrix
in (6) and ¥, is the corresponding input signal. Let us ex-
press the D-AMP iterations (6) for settings where the matrix
is SP(VW)~2,

O = Da((SP(VW)~2)"r! +9t) @)
o= y— (SP(VW) 2)9! + (8)
DL (SPVW) )T )

1
= y-—SPz'+ Ertflﬁ;

1
5 T D (SP(VW)2) Tt i)
©))

the input of the denoiser D4+ becomes

(SP(VW) 5)Trt 49t = (SP)T(VW)3/! + 9 =
(SP

= (VW)3¢'

where ¢¢ is the noisy image at the iteration .

While D-AMP is only guaranteed to converge with i.i.d. sens-

ing Gaussian matrices, one of the main aims of this work is to

show how successfully message passing algorithms can work

in solving undetermined system away from the ideal case sim-

ilar to other popular CS recovery algorithms such as L; or
Iterative Hard Thresholding (IHT).

2858

(
)T (VW) 27t + (WV)2 2!

5. DENOISING-BASED TURBO CS

The next proposed algorithm is based on the turbo principle in
iterative decoding [14]. The message passing scheme of the
D-Turbo algorithm is illustrated in Fig. 1 and it is composed
of two stages with a loopy message passing.

TrL—-D

Denoiser

LMMSE
Estimator

TDL

Fig. 1. Denoising-based Turbo CS message passing scheme

The first stage is the Linear Minimum Mean Square Error Es-
timator (LMMSEE) which produces an extrinsic estimate of
x based on the observation y. Exploiting the extinsic formu-
lation of the LMMSE [14], we can obtain at the ¢-th iteration
the following expression for the messages % _, ,, and . _,
which are respectively the mean value and variance of the es-
timate:

t t—1
zt — r Tr,p
DL = Moo\ 703 -1
(a') NL=p
t t—1
t ot YoMMSE _ %Dl
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NomMMmse  Mpsr
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+E [DW‘L_,D (l’tLjD)D
E|Dy; (L p)l

1= E|[ Dy (7 p)

t
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"NL—~b

N _
NLp = (M - 1) N+ (0h)?

where E[] is the expectation. The vector z% . ;, is used as the
input for the denoiser 2 = D,: (27 _,p). Itis important to
point out that the vector z% _, ;, has a similar structure as the
equivalent vector ¢* in the AMP message passing and also it
incorporates the preconditioning of the Radon operator. The
main difference between AMP and Turbo CS is related to the
derivation of the so called Onsager term.

6. RESULTS

To compare the different CT reconstruction strategies for re-
duced number of views, the projection dataset from a real
phantom in Fig. 2(a) was simulated in Matlab with a fan-
beam X-ray CT geometry [15]. The number of views is 90
evenly spanned on an orbit of 180°+ fan angle. The detec-
tor arrays are on an arc concentric to the X-ray source with a
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distance of 949 mm and the distance from the rotation center
to the X-ray source is 541 mm as depicted in Fig. 2(b). The
detector cell spacing is 1.0239 mm and FOV ~ 25 cm. A
quarter detector offset is also included to reduce aliasing. The
reconstructed image is of 512 x 512 array size and the Poisson
noise with I, = 10° has been included in the simulation.
The existing image denoising algorithm BM3D has been used
as the denoiser in both D-AMP and D-Turbo CS since it pro-
duces the state-of-art recovery for natural images [2].
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Fig. 2. CT image reconstruction: (a) Real image used for CT
scan simulation, (b) Fan-Beam simulated geometry, (c) FBP
recovery, (d) PWLS-PCG recovery (e) BM3D-Turbo CS re-
covery, (f) BM3D-AMP recovery

In Fig. 2 are shown the image recovery results for Filtered
Back Projection (FBP), D-AMP and D-Turbo CS. The PWLS,
which represents the state of the art for CT reconstruction,
refers to the minimization of the following cost function

argmin [ly — SPz|f, + BR(x)

through the preconditioning Conjugate Gradient (PCG) algo-
rithm. R(x) is a TV-like regularization R(z) = Zfi’”’l ni(x —
x;) where 7;(z) is an edge-preserving potential function.
From Fig. 3(e)-(f) and the zoomed details in Fig. 4 it can
be seen that both BM3D-AMP and BM3D-Turbo CS yield
a better reconstruction of the structure of the image than
PWLS-PCG which thens to over smooth features due to the
TV-like regularization even with different values of g > 1.
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Fig. 3. Error log ||z — z|| at each iteration for the tested re-
covery algorithms: the stopping criterion has been manually
selected when the algorithm reached the plateau.

In Fig. 3 it can be seen that D-Turbo and D-AMP converge
in approximately 10 iterations while PWLS-PCG requires 70
iterations. Moreover, the D-Turbo CS and D-AMP outper-
form the iterative PWLS-PCG in terms of computation time.
The computation times, PSNR and complexity analysis are
summarised in Table 1. The algorithm complexity of both D-
AMP and D-Turbo CS is mainly constituted by the denoiser
BM3D applied at each iteration. Finally both D-Turbo CS and
D-AMP achieve comparable results in terms of PSNR with
low computational time respect to PWLS-PCG. In addition
D-AMP leads to an higher flexibility in choosing the appro-
priate denoiser according to the image and noise model and in
balancing the trade-off between complexity of each iteration
and recovery resolution.

7. CONCLUSIONS

In this paper two message passing type algorithms for CT
reconstruction with fewer angular projection measurements
have been proposed and tested. The CS recovery algorithms
are based on the idea of embedding generic denoisers into
the message passing framework and have been adapted to in-
clude suitable preconditioning for the CT imaging task. The
results show an improvement in reconstruction of the fine de-
tail in comparison with a state of the art model based itera-
tive reconstruction technique. Further analysis will include a
detailed comparison of the Radon-based algorithms with the
performance predicted by state evolution [1] and a compar-
ison between the two message passing approaches D-AMP
and D-Turbo CS.
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Table 1. PSNR and computational time for an 512 x 512 image reconstruction

Algorithms PSNR [dB] Time / Iterations Complexity
BM3D-Turbo CS 10.8 2.7 min 2D NUFFT O(2(aN)?log(aN))+

10 iterations O(N, Ny +3MN) + BM3D
BM3D-AMP 11.05 3.1 min 2D NUFFT O(2(aN)?log(aN))+

10 iterations O(N, Ny + 4M N) + BM3D
PWLS-PCG 11.3 8.5 min 2D NUFFT O(2(aN)?log(aN))+

70 iterations O(N, Ny +2MN)
FBP 32 0.5 min 2D NUFFT O(2(aN)?log(aN) + N, Np)

Fig. 4. Image detail: (a) Original image, (b) PWLS-PCG, (c) BM3D - AMP
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