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ABSTRACT
Vesicles are a key component for the transport of materials
throughout the cell. To manually analyze the behaviors of
vesicles in fluorescence time-lapse microscopy images would
be almost impossible. This is also true for the identification
of key events, such as merging and splitting. In order to au-
tomate and increase the reliability of this processes we intro-
duce a Reversible Jump Markov chain Monte Carlo method
for tracking vesicles and identifying merging/splitting events,
based on object interactions. We evaluate our method on
a series of synthetic videos with varying degrees of noise.
We show that our method compares well with other state-of-
the-art techniques and well-known microscopy tracking tools.
The robustness of our method is also demonstrated on real mi-
croscopy videos.

Index Terms— Light microscopy, biomedical imaging,
MCMC, merging, splitting

1. INTRODUCTION

Specific molecules can be located in cells using fluorescence
microscopy. Fluorescent molecules absorb light at a particu-
lar wavelength and emit light, at a longer wavelength. Laser
scanning confocal microscopy is a modality used for viewing
fluorescence within cells [1]. Many individual objects have
to be tracked to obtain robust and sound conclusions. How-
ever, tracking subcellular particles is challenging. Problems
are due to the small sizes of these particles as well as their
behavior. In addition, one has to cope with large numbers
of particles, making manual tracking infeasible, as well as a
relatively low signal-to-noise ratio (SNR).

Due to the limited spatial resolution of the microscope,
a vesicle is displayed as a dot. The small size of vesicles
means that not many fluorescent molecules may be attached
to them. The resulting low contrast of each vesicle makes its
identification against the cellular autofluorescent —the nat-
ural emission of light by biological structures—background
challenging. Furthermore their complex motion, which in-
cludes sudden changes in speed and direction, make tracking
particularly challenging. Vesicles may also move out of the
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focal plane during observation; this leads to a change in ap-
pearance. Additionally, the large number of vesicles in the
image sequences rules out algorithms that are only applicable
to one object or few objects.

Conventional approaches to tracking in molecular cell bi-
ology typically consist of two steps, detection in each image
frame and correspondence, using the nearest neighbors. This
approach to object tracking is only applicable to videos which
show a few clearly distinguishable objects against a uniform
background. They are however unable to cope with cases con-
taining poor imaging conditions. To obtain better temporal
associations, in videos with low SNR’s, high object densities
and complex motion, it is necessary to make better use of
temporal information and prior knowledge.

In [2] a particle tracking method for clathrin mediated
endocytosis analysis was proposed. Fluorescence images
were acquired using total internal reflection microscopy and
the multiple hypothesis tracking (MHT) framework was ex-
tended by considering multiple observation candidates and
more types of trajectory candidates. MHT maintains a tree
of hypotheses for all possible associations, which results in
an exponentially growing number of hypotheses. Sequential
Monte Carlo (SMC) methods are typically applied in cases of
nonlinearity and nonGaussian statistics, in particular particle
filtering (PF). In [3] a mixture of PFs was used for tracking
microtubule growth in fluorescence confocal microscopy. PFs
are again employed in [3], for tracking virus particles in time-
lapse fluorescence microscopy. Detailed analysis was done,
comparing a mixture of PFs, independent PFs, and other de-
terministic approaches. In their analysis [3] demonstrated the
superior performance of independent PFs, for tracking a large
number of targets.

Markov Chain Monte Carlo (MCMC) based tracking
methods have an advantage over conventional PFs [4]. They
are more effective in high-dimensional spaces and do not have
the same degeneracy problems faced by PFs [5]. [6] explains
that running one individual PF for each target is not a viable
option and that is does not address the complex interactions
between targets and leads to frequent tracking failures. They
also demonstrate the superior performance of their MCMC
based tracker against a standard PF and independent PFs.

In this paper we present a MCMC based tracking algo-
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rithm, with reversible jumps (RJMCMC), to tracking a large
number of vesicles, in fluorescence confocal microscopy
time-lapse images. We introduce methods to distinguish be-
tween vesicle birth from splitting and death from merging.
Theoretical preliminaries are discussed in Section. 2. Details
of our RJMCMC tracking algorithm are presented in Sec-
tion. 3. Experimental results are shown in Section. 4 and we
conclude in Section. 5.

2. BAYESIAN FOUNDATIONS FOR OBJECT
TRACKING

Under the commonly made assumption that target motion is
Markovian, the Bayes filter offers a formulation to tackle the
problem of tracking multiple objects. The recursive relation
is often intractable since complex high dimensional integrals
must be solved. The Kalman filter provides an analytical so-
lution if the dynamical and measurement models are linear
and Gaussian. However this is not always the case, and an
analytical solution cannot always be obtained. In this case
Monte Carlo methods are commonly used to approximate the
solution.

Given a time-lapse video, with objects to be tracked, we
assume that an object is represented by a state vector {xt :
t = 1, 2, ...} and a noisy measurement {zt : t = 1, 2, ...},
where x1:t , {x1, ...,xt} and z1:t , {z1, ..., zt} represent
the state and observations up to time t, respectively. Here the
state x represents an objects coordinates. At each time step
the posterior probability density function (PDF) p(xt|z1:t) is
computed by first obtaining the prior PDF p(xt|z1:t−1) and
then updating with the new measurement zt using Bayes’ the-
orem:

p(xt|z1:t−1) =
∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1. (1)

p(xt|z1:t) ∝ p(zt|x)p(x|z1:t−1). (2)

In (1) and (2), p(xt|xt−1) is commonly called the motion
or dynamical model and p(zt|xt) the measurement or obser-
vation model. From the posterior distribution (2), we are able
to estimate xt given zt. PF based methods approximate (2),
by using N particles that are weighted based on importance.
The weighted particles are then propagated in time. Below
we describe our MCMC approach to estimating (2) and xt.

3. TRACKING A VARIABLE NUMBER OF
VESICLES USING RJMCMC

Due to the limitations of importance sampling in high dimen-
sional state spaces, researchers have applied MCMC methods
to tracking problems. One advantage is that MCMC methods
are flexible and can sample only a part of the state conditional

upon the rest, thus facilitating efficient samples. One main
advantage with MCMC methods is its ability to cope with
high dimensional state spaces. All MCMC methods work by
defining a Markov Chain over the space of configurations x,
such that the stationary distribution π(x) of the chain is used
to approximate the posterior p(xt|z1:t) over the set x given
the measurements z. If we denote the total number of states,
(at frame t) as n, then the object specific state is xkt, (where
k ∈ Z : k = 1, ..., n).

The Metropolis-Hastings (MH) algorithm [7] is a fre-
quently used method for generating samples from π(x). It
is an iterative method where each sample is generated based
on an acceptance probability. If there are N samples, π(x) is
approximated at time t as {x(i)

t }Ni=1 ≈ p(xt|zt). In order to
generate the acceptance probabilities new samples are drawn,
based on a proposal density Q(x′kt;xkt), where x′kt is a
proposal state. Here we perturb the target state by setting the
proposal density to a normal distribution (standard deviation
1) around xi

kt [6].

3.1. Observation and motion models

For our observation model we use a Gaussian function located
at x as g(x) to estimate vesicles. Gaussian fitting for track-
ing in fluorescence microscopy applications has been demon-
strated to be robust, [8], [3]. In our applications we fix the
standard deviation of the Gaussian to match the size of a vesi-
cle and we also normalize the intensities. Although these pa-
rameters can be included in the state vector, we found that
our approach gave good results for our applications. There-
fore given an observation z we define our measurement model
as:

p(z|x) ∝ exp(D(z, g(x))2). (3)

Where D is the Euclidean distance (in a window 3 times the
radius of a vesicle).

Typically, vesicles seem to exhibit a random motion. For
our motion model we assume the vesicles follow a Gaussian
Random walk, with standard deviation σx.

3.2. Object interactions

It is sometimes possible for trackers to be attracted to the same
objects, when multiple objects are close by. This is usually
undesirable and will result in tracking failures. [6] proposed
to model object interactions using a pairwise Markov Random
Field (MRF), created at each step (V,E). Object interactions
are incorporated into the motion model, such that:

p(xt|xt−1) ∝
∏
j

p(xjt,xj(t−1))
∏

j1,j2∈E
ψ(xj1t,xj2t). (4)

Where ψ(xj1t,xj2t) is a pairwise interaction potential; given
my means of a Gibbs distribution such that, ψ(xj1t,xj2t) ∝
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exp(−d(j1,j2)) and j1 6= j2. For split/merge moves we
want objects that are juxtaposed to give a higher accep-
tance ratio, therefore we propose using ψs/m(xj1t,xj2t) ∝
exp(d(j1,j2) − 1), for these moves. Here d(j1,j2) is a penalty
function from allowing two states to be too close together. We
define d(j1,j2) to be the Dice’s coefficient between two circles
(radius=vesicle radius) located at the positions of objects j1
and j2. Moreover, the interaction term can be factored out of
the motion model and be treated as an additional factor.

3.3. Reversible-Jumps

In the RJMCMC method [9], the MH algorithm is ex-
tended to handle trans-dimensional moves, therefore in-
creasing or decreasing the number of objects being tracked.
When there is a varying number of objects to be tracked
each sample will include a set of identifiers kt, which
p(kt,xt|zt) ∝ {k(i)t ,x

(i)
t }Ni=1 [6]. The algorithm selects

a move —a move that can alter the dimensionality is referred
to as a jump—and then proposes a new state (k′t,x

′
t), based

on the proposal density Qm(k′t,x
′
kt; k

i
t,xkt) from the move

type selected. Every jump should have a corresponding re-
verse jump; here we denote the reverse proposal density as
Qm′(kit,xkt; k

′
t,x
′
kt), where m′ is the reverse jump to move

m.
For our application of tracking vesicles, we propose the

following sets of moves m: birth/death, split/merge, and up-
date. Being able to distinguish split/merge events from a
birth/death events (respectively), is a useful task in cellular bi-
ology. Identifying occasions of vesicles merging can indicate
the transfer of cargo. Automatically highlighting these rare
events will allow biologists to better understand complex pro-
tein mechanisms that happen during vesicle merging. Here a
birth scenario is usually associated with an object moving into
the microscope’s field of view or coming into the focal plane
and likewise for object death. A split however is the creation
of a new vesicle from an existing one; the opposite for merg-
ing. The probabilities of selecting a birth, death, split, merge,
or update move are: pb, pd, ps, pm, pu, respectively. For each
move, in order to estimate p(kt,xt|zt) an acceptance ratio
must be calculated, for each sample. The acceptance ratio is
as follows:

a =
p(k′t,x

′
kt|zt)

p(kt,xkt|zt)
pm′

pm

Qm′(kt,xkt; k
′
tx
′
kt)

Qm(k′t,x
′
kt; kt,xkt)

. (5)

Vesicle detection
The subsequent jump moves are facilitated by our vesicle de-
tection. Given a frame at time t as It, our vesicle detection
scheme is as follows: 1) obtain an image mask by threshold-
ing It, by the 95th percentile, of all nonzero pixels. 2) Given
a Gaussian smoothed (with a standard deviation the diameter
of a vesicle) version of It, apply the mask to obtain Itm. 3)

The set of detected target identifiers kd, is obtained by locat-
ing the regional maxima of Itm. With a method to detect new
vesicles we can define our jump proposals as follows:
Birth
In the birth step we propose adding a detected object Ob to
the identifier set kt, by selecting an object with probability
Qb =

1
|kd\kt| . Where (kd \ kt) /∈ kt, is the set of objects that

have been detected but are not a part of kt. Correspondences
are made by the nearest neighbor method. If no new object is
detected then Qb = 0.
Death
Again we facilitate out death move using our object detector.
Here we use (kt ∩ kd), as the set of objects kt that are corre-
sponding with more than one object in kd. An object Od is
selected Qd = 1

|kt∩kd| . If all tracked states are accounted for,
otherwise Qd = 0.
Split/Merge
Since splitting and merging are, in principle, specialized cases
of births and deaths, we used the same proposal densities as
for births and deaths, respectively. The split move is defined
similarly to the birth move, but with the assumption that the
birth happens juxtaposed to another vesicle and similarly for
deaths and merging.
Acceptance ratios
The corresponding acceptance ratios for the different move
types can by obtained from (2) and (5):

ab = p(zt|xb)

p(k′t,x
′
kt|z1:t−1)

∏
j1∈E

ψ(xb,xj1t)

p(kt,xkt|z1:t−1)

×pd
pb

|kd \ kt|
|k′t ∩ kd|

, (6)

ad =
1

p(zt|xd)

p(k′t,x
′
kt|z1:t−1)

∏
j1∈E

ψ(xd,xj1t)

p(kt,xkt|z1:t−1)

× pb
pd

|kt ∩ kd|
|kd \ k′t|

, (7)

as = p(zt|xs)

p(k′t,x
′
kt|z1:t−1)

∏
j1∈E

ψs/m(xs,xj1t)

p(kt,xkt|z1:t−1)

×pm
ps

|kd \ kt|
|k′t ∩ kd|

, (8)

am = p(zt|xm)

p(k′t,x
′
kt|z1:t−1)

∏
j1∈E

ψs/m(xm,xj1t)

p(kt,xkt|z1:t−1)

× pb
pd

|kt ∩ kd|
|kd \ k′t|

.

(9)
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Algorithm 1: RJMCMC vesicle tracker

Generate samples (kit,x
i
t)

n
i=1.

for k = 1, ..., n do
• Initialize sampler where target (kt−1,xt−1)) is
updated according to the motion model, and used
as the initial sample in the Markov Chain.
for i = 1, ..., (N +B) do

/* B is the burn-in iterations,
where samples are not stored
during this period. */

• Select a move type m, where
pu =

(
1− (pb + pd+ ps + pm)

)
.

• Obtain the new (k′t,x
′
t)), based on the move

selected.
• Calculate the acceptance ratio
a = min(1, a), based on the move type from:(
(6),(7),(8),(9),(10)

)
.

• Accept the proposed move with probability a
i.e. (kit,x

i
t)) = (k′t,x

′
t)); otherwise set as

previous sample.
• If a move type that increases dimensionality
is selected: (kt,xkt) ∪ (Ob,xb/xs)).
• If a move type that decreases dimensionality
is selected: (kt,xkt) \ (Od,xd/xm)).

end
end

au =
p(zt|k′t,x′kt)
p(zt|kt,xkt)

p(k′t,x
′
kt|z1:t−1)

p(kt,xkt|z1:t−1)
Qm′(kt,xkt; k

′
tx
′
kt)

Qm(k′t,x
′
kt; kt,xkt)

.

(10)

Where j1 6= Od in (7) and (9). The interaction terms for the
proposed merge and split moves discourage those moves to
be taken if the potential object is not in close proximity to
another target. By only considering the state of one object
per iteration, most factors in the above acceptance ratios can-
cel and only one likelihood calculation needs to be done per
iteration.

3.4. Managing short lived detections

Our method of adding or removing from the number of ob-
jects being tracked is facilitated by a vesicle detector. How-
ever, during image acquisitions there may be many spurious
detections. These are attributed to autofluorescence or vesi-
cles that only temporarily enter the field of view. Although
detected, there is little need in tracking these spurious ob-
jects. [3] encountered a similar problem; when tracking virus
particles. We adopt a similar approach, where we pass our
detected and tracked objects through a buffer, before actually
tracking them. Given the set of objects being tracked xkt,
upon detection at time td they are initially placed in a buffer,
xB
kt. Once (t − td) > tthresh, the object is taken out of the

(a)

(b)

(c)

Fig. 1. Examples of varying SNRs used and sequence of tracks
from the proposed methods and the ground truth.

buffer and its track is recorded; however if it is removed be-
fore the threshold its track will be purged from the recored set
of tracks.

4. EXPERIMENTAL RESULTS

We test our method using synthetic and real microscopy
videos. We set σx to 0.3, pb and pd =0.08, ps and pm =0.05,
and tthresh =5. The RJMCMC method is set to 40 iterations
with a 20% burn-in. We also scale our interaction terms by
10, for emphasis. Our simulated videos (512×512) contained
40 vesicles, modeled as a Gaussian with a standard devation
of 1.5 pixels. They were also varied in intensity and exibited
a random motion. Vesicle birth, death, splitting, and merging
was also simulated (where vesicles could also move outside
the boundary). We also added Possion noise to our simula-
tions, with 5 equally spaced SNRs, (SNR=1.91-7.68). Here
SNR is defined as in [8]. We denote our images as Seq1−5,
where Seq1 has the lowest SNR. Examples of Seq1−5 are
shown in Fig. 1 (a) for a section of our test videos, from
a single frame. We also show the tracks —in blue—for a
section of Seq3, (for frames: 10, 30, 45, 60 and 75) in Fig. 1
(b) and the corresponding ground truth tracks in Fig. 1 (c).

We use two metrics to compare our results, firstly the root
mean square error (RMSE). In the RMSE we use the Eu-
clidean distance between our tracked vesicles and the ground
truth, for corresponding vesicles. We also calculate the per-
centage accuracy, which is the ratio of correct tracks to the to-
tal number of tracks. A track is said to be correct if it is within
3 pixels of its corresponding ground truth track. These results
are shown in Table 1, we also show results from a well es-
tablished microscopy object tracker, u-track [10]. Our results
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Fig. 2. Vesicle pathways for real microscopy video (top).
Vesicle tracks (blue) at different time frames (bottom row).

Seq1−5 Seq1 Seq2 Seq3 Seq4 Seq5

RMSE 1.23 1.05 0.85 0.93 0.84
Accuracy(%) 95.7 96.1 98.3 96.9 98.2
RMSE [10] 1.75 1.75 1.74 1.73 1.72

Accuracy(%) [10] 93.9 93.9 93.8 93.8 93.9

Table 1. Comparison of proposed method and u-track against
ground truth, with varying SNRs.

also compare favorably, on similar tests, with other state-of-
the-art tracking techniques [8].

To evaluate our merging and splitting moves we calcu-
lated for RMSE (but also including time) for the detection
of both events. The merging tests were one on a 200 × 200
video containing 50 vesicles with SNR = 4.1. All merges
were detected, with an RMSE of 3.5. Splitting was done on a
similar video, but with 10 vesicles. All splits were observed
but with a RMSE of 12.7. Improvements to these moves can
be made by changing the observation model (to reduce false
positives); this will be the focus of future work. We also
demonstrate our results on real microscopy videos (transferrin
bound to Alexa Fluor 488), with dimensions

(
(512× 512) ,

(82µm×82µm)
)
. The bottom row of Fig. 2 shows the tracks

for a 100 × 100 section of a video (at frames: 10, 30, 45 and
70). The top row shows the tracks for the same (full) video.
It is very difficult to obtain tracks for all vesicles manually,
however upon inspection most vesicles seem to be tracked ac-
curately. To demonstrate the robustness of our algorithm we
do a comparison with [10], where the RMSE between tracks
obtained using our method and u-track was 4.19.

5. CONCLUSION

Here we have presented an approach to tracking vesicles
in fluorescence light microscopy time-lapse images. Our
method uses a RJMCMC approach where two sets of dimen-
sional altering moves are used: birth and death, and merging
and splitting. We incorporated a penalization scheme to
prevent trackers from converging on the same object. A sim-
ilar penalization scheme is also used to distinguish between
birth/splitting and death/merging. The proposed method is
evaluated on a set of synthetic images, with varying SNR’s.
Our approach gives competitive results compared to other
state-of-the-art methods. Results are also compared against
u-track on fluorescence images of vesicles, however u-track
contained many spurious detections. Our automated approach
will enable biologists to analyze larger amounts of data and
identify important evens with greater accuracy.
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