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ABSTRACT

This paper applies the Compressed Sensing (CS) the tar-
gets detection in small scale dense Wireless Sensors Net-
works (WSN). The monitored area is partitioned into
cells, each equipped by one sensor. The CS application
aims to locate targets from a reduced subset of sensors
measurements. A generalized version of a recently pro-
posed Greedy Matching Pursuit algorithm (GMP), de-
signed for point events joint detection and counting, is
derived, which is denoted by gGMP. This generalization
enables the identification of several active cells at each
iteration. Also, an optimized deterministic sensors sub-
set selection scheme, based on the maximum energy is
envisaged and shown to outperform the random choice
scheme.

Index Terms— Dense Wireless Sensors Networks, rare
targets detection, Compressed Sensing.

1. INTRODUCTION

Over the past few years, a new theory called Compressed
Sensing (CS) emerged where a signal can be sampled and
compressed simultaneously at greatly reduced rates. Then,
the signal can be reconstructed from a small set of measure-
ments if it is sparse in certain domain [1] [2]. Very recently
interesting applications in wireless communication and net-
working [3] [4] based on CS theory are being envisaged.
In particular, CS is adopted for events detection in Wireless
Sensors Networks (WSN) [5] thus offering a great potential
for energy consumption reduction thanks to the small number
of required sensor measurements.

CS application in WSN is indeed based on the sparse na-
ture of events to be detected, within the monitored area. As
already considered in several works such as [6], the sparse
events detection in WSN is studied under binary detection
model using bayesian approach where each active detected
cell contains at most one event. The events number counting
in a monitored area which is investigated in [7] is of broad in-
terest to many WSN applications such as intrusion detection
and mobile object tracking [8] [10].
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The sensors deployment over the monitored area depends
mainly on the envisaged application. In a large scale WSN,
a vast number of distributed sensor nodes are deployed over
a large region. Such WSN are adequate especially in mili-
tary fields for enemy and arms detection, in animals tracking
in large forests, etc. In dense WSN, the density of sensors
nodes is generally high over the monitored small area. In this
scenario, the distance between neighboring nodes is small
which is the case of industrial process monitoring like man-
ufacturing broken down robots localization [11], intrusion
detection and localization in commercial markets [8] and ma-
chine health monitoring [9].

In this work, we consider the location detection of spatially
clustered targets through their transmitted signal detection.
To this aim, the monitored area is partitioned into cells, each
equipped by one sensor. The dense deployment of sensors
makes that only a reduced fraction of them holds targets.
As a consequence, the event of ’active cell’ (cell with tar-
gets) is rare throughout the network thus giving an adequate
framework for CS theory application. In particular, adapted
Matching Pursuit (MP) approach is here applied for joint
targets detection and counting. The paper contribution is a
generalized extension of the recent Greedy Matching Pursuit
(GMP) algorithm [7] denoted by gGMP. This generalization
is based on the identification of more than one active cell
position at each iteration. A similar generalization is studied
in [12] in the case of the Orthogonal MP (OMP) for con-
tinuous entries sparse vector reconstruction in the noiseless
case. On the contrary, in the context of discrete events de-
tection and counting in dense WSN, the sparse parameter has
discrete entries. The generalized algorithm gGMP acts for
multiple active cells detection in the same iteration whereas
in GMP [7], one active cell is detected at each iteration. Also,
we propose a new deterministic sensors selection scheme
based on global observation energy maximization.

The paper is organized as follows. The next section for-
mulates the CS application in the WSN context. Section 3
emphasizes the two proposed contributions. First, the pro-
posed gGMP algorithm is detailed. Second, the proposed
scheme of sensors positions selection is presented. Finally,
performance is evaluated in section 4 before the conclusion.
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2. PROBLEM FORMULATION

We consider a dense wireless sensors network deployed to
locate potential targets presence. The monitored area is par-
titioned into IV cells, each is equipped by one sensor. Some
targets may be present and generate signals. In our work,
like in [7] more than one target can be present per cell. Also,
the targets are supposed spatially clustered which leads to a
rareness of cells holding targets. Then, only a small fraction
K among the N cells contain some events. Denoting by s the
K —sparse vector giving the events number per cell, s; its "
component verifies s; € {0, 1,...,m} where m is an integer
representing an upper bound on the possible number of tar-
gets a cell can hold. In our study, a Time Division Multiple
Access (TDMA) is adopted. In fact, during each time slot
one sensor listens and reports its energy measurements to the
fusion center thus avoiding any interference between sensors
readings sending.

As mentioned above, we are interested with dense WSN
where the spacing between two adjacent sensors is very small
in such a way that the large scale fading effect can be ne-
glected. Then, the received signal at sensor j corrupted by a
complex Gaussian noise fi ~ CN (0, 0%In) is expressed as

XJ :Zijgj—‘rflj, (1)
€€

where £ denotes the set of the active cells in monitored area.
Cij = [Pirjr-.es hisﬂ} gives the channels to sensor j of the
s; events in cell i where h;,; captures the Rayleigh of the ™"
target signal. §; = [gi,,...,9:, | denotes the transmitted
signal by the s; events in cell 7. The so generated signal gi, 1s
modeled as ~ CN (0, Py) where P, is the target transmitted
energy. Concatenating x; for j = 1,..., N, leads to the IV
elements vector

x = Cg + n, )
N

where Cisan N x Z s; channel matrix, g = [g7,..., g% |7
i=1

is the vector of targets transmitted signals.
The j" sensor received energy X; is expressed as

Z Z (C,L,gn ,c ’ ) + E(f;n}). (3)
ne€ p/cg

We suppose that the signals transmitted by one cell targets or
different cells targets are uncorrelated. Also, these signals are
supposed uncorrelated with channels. Indeed, the last expres-
sion can be written as

Sy, Sy

E(x;x}) = ZE Zh”uqm Z hnqun/ + B (i),

neé =1
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In practice, the last energy expression is evaluated by averag-
ing over samples during an interval over which a block fading
channel is considered. Also, the Rayleigh fading channels
between one cell targets and a given sensor are supposed to
verify hy,j = hny forl = 1,...s,. Then, the 7t sensor
received energy can be approximately by

N
E(x;x;) = Py |hnj|’sn + 07, )
n=1
N
> ®s, + 0t (6)
n=1

Concatenating the N sensors energy measurements, we ob-
tain
X = ®s+1), (7

where ® is IV x N target decay energy matrix and n = o21y.
As most of cells do not hold targets, the CS theory can be
applied to reconstruct the K — sparse signal s from the re-
covered energy vector X using a subset of M measurements
where K < M < N. Lety bea M x 1 vector representing
the M selected sensors energy measurements. Then, we have

y = As+n, 8)

where A is M x N submatrix of ® and n = 021 ;.

3. PROPOSED APPROACHES DESIGN

In this section, we will describe the proposed sparse targets
detection and counting gGMP algorithm. After that, we will
develop the proposed scheme for an optimal sensors positions
selection.

3.1. Generalized Greedy Matching Pursuit algorithm

In our context, we exploit the rare nature of cells holding
targets in the monitored area to apply CS approach for targets
detection and counting. More precisely, we propose a novel
Generalized Greedy Matching Pursuit (gGMP) algorithm
based on multiple active cells detection at each iteration.
Contrarily to [12] where the generalization is established in
a noiseless scenario for the recovery of continuous entries
sparse vector, the rare events number structure has discrete
entries and the observation is contaminated by noise.
Otherwise, with the classical GMP algorithm [7], at each
iteration only one cell is detected as active and the number of
its targets is counted. With the proposed gGMP version, the
targets detection and counting in ¢ > 1 cells is processed at
each iteration. The different steps of the new gGMP method
are detailed hereafter.

At iteration 7, we search the set P(*) of possible combinations
of ¢ positions taken from Q~1 where Q01 is the set of
cells indices not still detected as active. Then, since each
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active cell can hold a number of targets in {1,...m}, we
form V as the set of vectors of g elements each taking their
values from {1,...m}. Adding the vector of ¢ all elements
at zero to V, its cardinal is card(V) = m? + 1.

The optimization step consists in finding the best element p
in P (cells positions) associated to an element v in V (as-
sociated number of targets per cell) which most contributes
to the residual observation y(9). The result of iteration i is
the NV x 1 vector zf,?
possible z, vectors with active (non zero) positions p in PO
and corresponding values v in V. The so detected ¢ cells

, which minimizes ||y — Az} over

have positions denoted by pggt € P and associated targets
number ’u((,;)t cV.

Q) is then updated by subtracting the ¢ newly detected
positions. y(* is updated by subtracting the located events
contribution from the residual observation according to (11)
where A7) is the submatrix of A containing columns with
()

positions pg,;.

o [nput:
An M x N measurement matrix A.
An M — dimensional signal measurement vector y.
An g detected cells number at each iteration.

o QOutput:
An N— dimensional reconstructed signal § with integer entries.

e Procedure:
Initialization: iteration count 7 = 0,
residual vector y(0> =Yy,
Q@ ={1....,N}and'” = 0.
reconstructed signal § = On 1.
Iteration:
while I = 0 do
t=14+1
1) Form the sets P9 and V.

pf,;)t , @é;)t = arg min

i—1 v)2
_min y©Y Azl ©)
r R

1) = Card ({]\Z)é;)t(j) =0, forj=1,.. .,q}) .
2) Updating phase

Q@ = N\, (10)
vy =y - A (11)
o (6 i)
S(p(()[;t) = Uipt (12)
end while
return §

3.2. Sensors Positions Selection Scheme

We here propose an optimized sensors positions selection
scheme in the aim of enhancing the detection performance

1194

compared to random selection as used in [7]. Indeed, only
a reduced number of M measurements are needed for s re-
construction such that M < N. In this way, M sensors
should be activated at a time while the remainning can enter
sleep mode, which may extend the network life duration. We
here adopt an optimized choice in the sense of selecting the
highest measured energy sensors among the /V sensors.

4. NUMERICAL RESULTS AND ANALYSIS

4.1. Simulation Parameters

For simulation parameters, we consider a small regular mon-
itored area with 16m x 16m divided into N = 64 cells (8
by 8 cells), each cell is equipped with one sensor. Then, the
distances between any two neighboring nodes are fixed to
2m which leads to a small and dense monitored area with
almost 20m as higher remoteness between sensors. We acti-
vate sensors in M = 20 cells. Among the IV cells, we select
randomly X' < M active cells where the targets number is
chosen uniformly at random from {1,2,3} (m = 3). The
target transmitted power is fixed to Py = 1. For the general-
ized version, the case of two cells detection at each iteration
(¢ = 2) is envisaged.

The performance is evaluated in terms of experimental eval-
uation of Normalized Mean Squares Error (NMSE,;) on s
and on active cells wrong detection (independently from the
estimated number of events) (NMSE,), accounting for both
missing and false alarm. Their expressions are respectively
given by

E(|lz - 2]3)

E(lls - 8ll3)
E(|l2l13)

NMSE, =
" E(sI3)

,NMSE,=
where s and § denote the true and estimated vectors of events
number per cell, z and Z are binary vectors obtained respec-
tively from s and § by placing 1 at non zero valued entries
positions and 0 elsewhere. Additionally, the rates of correct
detection and counting error over the true detection realiza-
tions are reported.

4.2. Numerical Results

We first study the performance of GMP and the proposed
gGMP versus the number of measurements M and the spar-
sity level K for N = 64 and SNR= 20dB. Figure («) displays
the rate of correct position detection. Subfig. (al) is obtained
for K = 4 and varying M and subfig. (a2) for M = 20
and varying K. It is noticed that the larger M is, the big-
ger is the rate of correct cell positions detection. It can be
observed that gGMP achieves better detection rate than GMP
version. Simularly, gGMP acheives an enhaced best detection
rate compared to GMP. Also, for fixed M, better detection
performance is obtained for lower K. Figure (b) illustrates
an example of targets localization where we select randomly
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(a) Comparison of gGMP and GMP when SNR=20dB.

M = 20 sensors and fix SNR= 10dB. This example clearly
indicates that gGMP can precisly recover the K = 4 targets
locations whereas GMP correctly estimates the locations of
all but one target. For the sensors density effect analysis, fig-
ure () reports the rate of correct detection versus the number
of the square network cells number /V ranging from 25 to
100. We also set the compression and the sparsity levels al-
most constant at respectively M/N =~ 0.3 and K /N = 0.03.
As N increases the detection rates remain very good even if
a slight decrease is observed for larger IV as it also implies
larger K. Also, we can see that gGMP has in average a better
detection rate.

We now consider the comparison of the proposed sensors se-
lection scheme to the random selection strategy. Then, the
rate of correct detection curves versus SNR obtained by GMP
and gGMP algorithms are displayed in figure (d) and demon-
strate an improved performance of the proposed optimized
scheme over the random selection mainly at low SNR values.
From 10dB, the two compared schemes exhibit similar behav-
ior. Also, the two proposed schems, combination of gGMP
algorithm and optimized sensors selection mode acheive the
lowest rate of counting error at low SNR as shown in fig-
ure (¢). NMSE; curves obtained by different considered ap-
proaches are superimposed in figure (). We can observe an
enhanced performance of gGMP algorithm compared to GMP
version over the whole SNR range. In addition, a sligh im-
provement of recovery accuracy of the proposed optimized
selection mode is obtained especially at low SNR. Almost a
similar behavior of NMSE, performance is observed in figure
(g), which depicts the mean error on cell positions detection.
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(b) Targets positions estimation when SNR= 10dB
when N =64, K =4, M =20and ¢ = 2.
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(c) Correct events position detection versus cells number
when M/N ~ 0.3, K/N =~ 0.03, ¢ = 2 and SNR= 20dB.

5. CONCLUSION

This paper investigated the problem of targets detection and
counting in small scale wireless sensors networks from the
perspective of compressive sensing theory application. We
first proposed a new generalized extension of the recent
Greedy Matching Pursuit (GMP) algorithm called General-
ized GMP (gGMP) for sparse targets recovery. Our approach
allows to identify simultaneously multiple active cells posi-
tions and their events number at each iteration. Simulation
results validate the superiority of the proposed gGMP over
the existing GMP algorithm in terms of correct cell position
detection and mean squares errors. Further, we considered
the problem of optimized sensors placement for which we
proposed a new scheme based on measured observation en-
ergy maximization. The proposed optimal sensors selection
realizes an enhancement of detection capacity and counting
error reduction compared to the random sensors selection
especially at low SNR.
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(d) Rate of correct detection versus SNR.
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(e) Counting error versus SNR.
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