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ABSTRACT

The paper deals with the task of robust nonlinear regression

in the presence of outliers. The problem is dealt in the context

of reproducing kernel Hilbert spaces (RKHS). In contrast to

more classical approaches, a recent trend is to model the out-

liers as a sparse vector noise component and mobilize tools

from the sparsity-aware/compressed sensing theory to impose

sparsity on it. In this paper, three of the most popular ap-

proaches are considered and compared. These represent three

major directions in sparsity-aware learning context; that is,

a) a greedy approach b) a convex relaxation of the sparsity-

promoting task via the ℓ1 norm-based regularization of the

least-squares cost and c) a Bayesian approach making use of

appropriate priors, associated with the involved parameters.

Index Terms— Robust regression in RKHS, learning

with kernels, kernel greedy algorithm for robust denoising -

(KGARD), robust non-linear regression

1. INTRODUCTION

Classification and regression have always been two major

tasks in the field of machine learning, and signal processing.

The task of “learning” in the presence of outliers and the

urge to develop robust parameter estimation techniques, is

not new. However, it has been drawing attention again, re-

cently, in almost every field. The current paper deals with the

non-parametric non-linear regression task. The non-linearity

is modelled via the assumption that the unknown non-linear

function, that quantifies the input-output dependence, lies

in a RKHS. Moreover, our focus is entirely set in the con-

text of robust estimation, i.e., performing the estimation,

disregarding the outliers that our data is contaminated with.

The purpose of this work is to analyse and compare related

competitive state-of-the-art methods.

This research has been co-financed by the European Union (European

Social Fund - ESF) and Greek National funds through the Operational Pro-

gram “Education and Lifelong Learning” of the National Strategic Reference

Framework (NSRF) - Research Funding Program: Aristeia I - 621.

In the classic problem of non-linear regression, where out-

liers are not present, each measurement yi is assumed to be

generated via the non-linear model:

yi = f(xi) + vi, i = 1, ..., N, (1)

where vi are random noise variables. Given the training

set/sample D = {(yi,xi)}Ni=1, our goal is to learn the input-

output relation ŷi = f̂(xi). All kernel methods, assume that

f belongs to a space of “smooth” functions H, which is as-

sumed to have a structure of a reproducing kernel Hilbert

space (RKHS). These are inner product function spaces, in

which every function is reproduced by an associated (space

defining) kernel, i.e., f(x) = 〈f, κ(.,x)〉H. RKHS are very

important in the field of machine learning, due to the cele-

brated Representer theorem, which states that the solution of

any regularized risk functional, i.e.,

min
f

{

N
∑

i=1

(

yi − f(xi)
)2

+ λ||f ||2H

}

, λ ≥ 0, (2)

over the training set D, where ‖ · ‖H =
√

〈·, ·〉H, admits a

representation of the form f(x) =
∑N

i=1 αiκ(x,xi). The

regularization term, is used in order to guard the solution

against overfitting (see, e.g., [1], [2, 3]). It can be shown that

this method is optimal only for the case where the noise vari-

ables are independent zero-mean, e.g., i.i.d Gaussian. Hence,

although the previous formulation has been successfully ap-

plied to remove Gaussian noise [4–6], it has been established

that the presence of outliers renders the solution sensitive to

overfitting. [7].

For the case where both outlier and inlier noise are present

(e.g., the random variable vi in (1) originates from a heavy

tailed distribution instead), the Least-Squares approach fails

to provide adequate estimation results, as demonstrated in

Figure 1. To deal with the overfitting phenomenon, the noise

scalar vi is decomposed into two parts; that is, a sequence,

ui, associated with the outliers and a sequence ηi, associated

with the inlier noise; hence vi = ui + ηi and the input-output
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Fig. 1. The original data are corrupted with 20 dB Gaussian

noise plus 12% outliers. The estimation performed with a

non-robust cost function (least-squares loss), is greatly af-

fected by the presence of outliers, attaining a MSEr = 1.81
(red line). The robust approach (KGARD), improves the esti-

mation significantly, attaining a MSEg = 0.05 (green dashed

line).

relation converts to:

yi = f(xi) + ui + ηi, i = 1, 2, ..., N, (3)

as proposed in [8] and also in [9]. Thus, instead of attempt-

ing to estimate f , one should also provide estimates to ui’s,

which, in the sequel, have to be extracted from the corrupted

measurements. This family of methods falls into the category

of robust estimation techniques (together with other robust

methods, e.g., weighted least squares).

2. SPARSITY-AWARE LEARNING TECHNIQUES

Sparsity-aware learning techniques have dominated the sci-

entific research for the past decade. In our context, sparsity

constraints are imposed on the outlier vector. This is due to

the fact that the outliers are expected to often comprise only

a small fraction of the training sample. Thus, most of the val-

ues of ui’s are zeros. In general, a percentage of less than

15− 20% of non zero values is expected. Higher percentages

are not very appealing, even though a few methods have been

proposed to perform well in such cases. However such results

should not be considered reliable (read [10–12]). In light of

the previous discussion, the problem in (2), is reformulated

accordingly.

Let u := (u1, u2, ..., uN)T , be modelled as a sparse vec-

tor. Thus, by definition of sparsity, i.e., employing a sparsity

constraint on u via the ℓ0 norm, the optimization task can be

cast as:

min
u,f∈H

||u||0

s.t.

N
∑

i=1

(yi − f(xi)− ui)
2
+ λ||f ||2H ≤ ε,

(4)

for fixed threshold parameters ε > 0 and λ > 0. Clearly, the

goal is to minimize the number of outliers, while preserving

a low training error and simultaneously keeping the function

smooth.

A major drawback is that the previous task (4), is of com-

binatorial nature, i.e., is by definition NP-hard. To overcome

this obstacle, a number of techniques have been proposed.

2.1. Kernel Greedy Algorithm for Robust Denoising

(KGARD)

The most recent approach, is attempting to solve (4) via

greedy selection methods. In spite of their simplicity, such

methods manage to perform the sparse approximation suc-

cessfully, under certain assumptions. The proposed scheme

is based on the popular Orthogonal Matching Pursuit (OMP)

algorithm, see [3, 13–15], which is the core of a number of

schemes that belong to the greedy family of methods.

Inspired by the Representer theorem, we assume that f =
∑N

i=1 αiκ(·,xi) + c, i.e, a bias term, c, is also included in

f . Hence, the set of functions is enlarged (see also the Semi-

parametric Representer theorem in [1]). To this end, instead

of solving problem (4), we target our efforts at estimating the

solution of:

min
u,α,c

||u||0
s.t. ||y −Kα− c1− u||22 + λ||α||22 + λc2 ≤ ε,

(5)

where α ∈ R
N are the kernel expansion coefficients, c ∈ R

is the bias term, 1 ∈ R
N is the vector of ones and y, u ∈ R

N

are the measurement and outlier vectors, respectively.

The main concept of the KGARD scheme is to perform

an estimation for the sparse outlier vector via greedy selec-

tion, as summarized in Algorithm 1. In particular, after per-

forming a least squares step on the subspace defined only by

the columns vectors of [K1], a minimum angle selection step

(outlier detection) follows, among vectors that belong to the

second part of matrix X = [K 1 IN ], i.e., the identity matrix

IN . In other words, a search is performed at each step, and the

column vector ejk of IN (jk ∈ J := {1, ..., n}) which max-

imizes the absolute inner product with the current residual,

as defined in Algorithm 1, is selected. Then, the subspace

is augmented by the selected column (regarded as an outlier)

and a new least squares task is performed. After the method’s

termination, the estimate to our uncorrupted data is computed

as

ŷ = Kα̂+ ĉ1.

Furthermore, efficient implementations, such as Cholesky

decomposition, QR factorization and the matrix inversion

lemma (MIL), are applied and found to greatly reduce the

complexity for the method. In particular, instead of a matrix

inversion, which generally requires O(N3) flops at each step,

the use of the Cholesky decomposition reduces the complex-

ity to O(N2), due to the fact, that the inversion is avoided
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Algorithm 1 Kernel Greedy Algorithm for Robust Denoising:

KGARD
1: procedure KGARD(K, y, λ, ε)

2: k← 0, X = [K 1 IN ]
3: Sac ← {1, ...,N + 1}, Sinac ← {N + 2, ..., 2N + 1}

4: ẑ :=
(

XT
Sac

XSac + λ2BSac

)

−1
XT

Sac
y

5: r ← y −XSac ẑ

6: while ‖r‖2 > ε do

7: k← k + 1
8: jk := argmaxj∈J |rj | ⊲ Selection step.

9: Sac ← Sac ∪ {jk + N + 1} , Sinac ← Sinac − {jk + N + 1}

10: ẑ :=
(

XT
Sac

XSac + λ2BSac

)

−1
XT

Sac
y

11: r ← y −XSac ẑ

12: Return vector ẑ =
(

α̂
T , ĉ, ûT

)T
after k iterations.

by updating the Cholesky matrix instead. The scheme1 was

introduced in [16,17] and has been found to be very efficient.

2.2. Convex relaxation - ℓ1 minimization with ADMM

An alternative path, in order to achieve sparse optimization,

while avoiding the non-convex formulation of (4), is to relax

the ℓ0 norm of the sparse outlier vector u, with its closest

convex one, i.e., the ℓ1 norm. Thus, using the linear expres-

sion f =
∑N

i=1 αiκ(·,xi), we have the following Lagrangian

formulation:

min
α,u

{

‖y −Kα− u‖22 + λαTKα+ µ||u||1
}

, (6)

for λ > 0 and µ > 0.

The equation model in (6), was proposed in [9] and the

method that was used is the alternating direction method of

multipliers (ADMM), as demonstrated in algorithm 2 for

w = 1 and S the soft-thresholding operator, i.e., S(z, γ) :=
sign(z)max(0, |z| − γ).

Algorithm 2 (Weighted) Alternating directions solver: WAM

1: procedure WAM(K, y, µ, λ, w)

2: u
(0) ← 0

3: for k = 1, 2, ... do

4: α
(k) ← [K + λIN ]−1

(

y − u
(k−1)

)

5: r = y −Kα
(k), u

(k) ← S
(

ri,
wiµ

2

)

, i = 1, ...N

6: Return α
(k) and u

(k) after k iterations.

The proposed scheme is more economic than the original

ADMM method and could be further optimized by applying a

Cholesky factorization (with cost O(N2) after the factoriza-

tion) instead of an inversion, since matrix [K +λIN ] remains

unchanged. Although the minimization task is now convex,

the performance towards error reduction is limited, due to the

relaxation from the ℓ0 to the ℓ1 norm. However, the authors

have resorted to a refined and more efficient method, as orig-

inally proposed in [18], that attempts to solve

min
α,u

{

‖y −Kα− u‖22 + λαTKα+ µ

N
∑

i=1

log (|ui|+ δ)

}

,

1The Matlab code can be found at http://bouboulis.mysch.gr/kernels.html.

for δ > 0 (in order to avoid numerical instability), using the

linear approximation of the concave logarithmic function, via

the use of the reweighted ℓ1-norm technique. The scheme is

summarized in algorithm 3. The refinement step of AM solver

Algorithm 3 Refined AM solver: RAM

1: procedure RAM(K, y, µ, λ, δ)

2:
[

α
(0),u(0)

]

←WAM(K, y, µ, λ, 1)

3: for k = 1, 2 do

4: w
(k)
i = (|u

(k−1)
i | + δ)−1, i = 1, ..., N ,

5:
[

α
(k),u(k)

]

←WAM(K, y, µ, λ,w(k))

6: Return α
(2) after 2 iterations.

(WAM solver with weights equal to 1) greatly improves the

performance of the original ADMM. Moreover, it should be

noted, that more than 2 iterations do not offer significant im-

provements on the performance of the method, since the ini-

tialization is already optimum. Furthermore, we should em-

phasize that the optimum parameters (λ∗, µ∗) to be used with

RAM, are not identical to those of WAM with w = 1. Thus,

the convergence speed of the RAM scheme, may be greater

than that of the simple AM. Finally, theoretical properties of

the method prove that for small values of δ > 0 method at-

tempts to approximate the ℓ0 norm of the sparse outlier vector

u.

2.3. Sparse Bayesian learning approach - RB-RVM

The Sparse Bayesian learning scheme, called Robust Bayesian-

RVM (RB-RVM), was introduced in [8] and is a modification

of the Relevance Vector Machine that has been presented

in [19].

Here, assuming a linear representation including the bias

term, the authors suggest the reformulation of (3), to y =
Ψαu + η, where Ψ = [1KIN ], αu = [αT

b ,u
T ]T and αb =

[c, α1, ..., αN ]T . Then, the joint posterior distribution of αb

and u (assumed independent) is given by:

p(αb,u|y) =
p(αb)p(u)p(y|αb,u)

p(y)
,

given the observations y and the prior distributions on αb

and u. The inference procedure follows the steps of the

classical RVM [19], taking into account that p(y|αb,u) =
N (Ψαu, σ

2IN ), where σ2 is the inlier Gaussian noise vari-

ance, and adopting some ‘sparsity promoting’ priors i.e.,

p(v|h) =
N
∏

i=0

N (vi|0, h−1), (7)

for vectorsαb andu, with hyper-parametersβ = [β0, β1, ..., βN ]T

and δ = [δ0, δ1, ..., δN ]T , respectively. Since the maximiza-

tion of p(y|β, δ, σ2) is performed by an EM algorithm, the

parameters βMP , δMP and σ2
MP are estimated and then used

for computing the posterior covariance and mean given by

Σ =
(

σ−2ΨTΨ+AMP

)−1
and m = σ−2ΣΨTy, (8)

23rd European Signal Processing Conference (EUSIPCO)

2926



where AMP = diag(βMP0, ..., βMPN , δMP1, ..., δMPN ).
Finally, prediction is accomplished, using the covariance

and mean of the posterior distribution for the parameter part

αb of αu, i.e., Σαb
= Σ(1 : N + 1, 1 : N + 1) and

mαb
= m(1 : N + 1). As noted, the RB-RVM rationale is

closely relate to the RVM formulation. The difference is that

instead of inferring just the parameter vector αb, the method

infers the joint parameter-outlier vector αu by replacing the

matrix [1 K] with matrix Ψ = [1 K IN ] and the use of only

the parameter part of the estimated αu for prediction.

3. THEORETICAL GUARANTEES

The WAM and RAM methods are guaranteed to converge,

since they both deal with a convex task. On the other hand,

no theoretical results regarding the convergence have been

established for the Bayesian approach. For both methods,

no theoretical results concerning the performance have been

proved. However, for the greedy method, properties regard-

ing the convergence of the method as well as the recovery of

the support pattern for the sparse outlier vector (for the case

where only outliers exist in the noise), have been studied.

The following proposition guarantees that KGARD, will

converge to a solution of minimum error.

Proposition 1 The residual obtained at each iteration cycle

of KGARD is strictly decreasing. Moreover, the residual even-

tually will drop below the predefined threshold ε.

We should emphasize here, that cautious selection should be

made on ε. If this threshold is predefined extremely small,

the proposed procedure will continue and model extra noise

samples as impulses (those originating from an inlier source),

filling up the vector u, which will no longer be sparse. Hence,

sensible tuning of the parameter ε is of great importance for

the method.

The second theorem, provides the conditions, under

which, KGARD succeeds in recovering the support of the

sparse outlier vector. The theorem has been derived for the

case of outlier noise only. Results for the case where both

inlier and outlier noise are present have also been derived, yet

the associated conditions turn out not to be realistic and are

not reported.

Theorem 1 Let K be a full rank, square, real valued matrix.

Suppose, that y = Kα0+c01+u0, where u0 is a sparse out-

lier vector. It is guaranteed that the algorithm will recover the

support of the sparse outlier vector, if the maximum singular

value σM (X0), of matrix X0 = [K 1], satisfies:

σM (X0) < λ

√

min |u0| − λ
√
2||θ0||2

2||u0||2 −min |u0|+ λ
√
2||θ0||2

, (9)

where min |u0| is the smallest absolute value of the outlier

vector over the nonzero coordinates, λ > 0 is the regulariza-

tion parameter for KGARD and θ0 =

(

α0

c0

)

.

4. COMPARISON OF THE METHODS

In the experimental section, we have tested and compared all

methods towards estimation (MSE) and two sets of experi-

ments have been performed. For the first test, the fraction of

outliers is left to vary while keeping the variance of the Gaus-

sian noise fixed. In the second test, we have reversed the pro-

cess, i.e., we have varied the σ of the Gaussian noise keeping

fixed the fraction of outliers. For all tests, the values of re-

quired parameters, were set after performing cross-validation

steps and optimized to reach the best possible performance

for each method (in terms of MSE).

The uncorrupted measurements were generated via y0 =
f(x) =

∑N
i=1 αiκ(xi,x), for N = 200 points over the in-

terval [0, 1], using the Gaussian kernel with σ = 0.1. The

coefficient vector α = [α1, ..., αN ]T is a sparse vector with

non-zeros at a percentage of 7.5%− 12.5% and values drawn

from the Gaussian distribution N (0, 202). That way, only a

few kernels participate in the representation of y0, which is

often the case. For both tests, the (corrupted) data were gen-

erated via

y = y0 + u0 + η,

where u0 is the sparse outlier vector with values ±40 and the

inlier noise vector η ∼ N (0, σ2). It should also be noted,

that experiments have been performed with the use of various

non-linear functions and results were very similar to the ones

we present.

On the first set of experiments, we have tested the MSE

obtained between the uncorrupted (y0) and estimated data

(ŷ) and averaged over 100 independent runs, with σ = 4 for

the inlier noise and for various fractions of outliers. For the

KGARD the parameters were set at λ = 0.3 and ε = 15. For

the RAM, λ = 0.1 and the values of µ are given in table 1,

along with the performance for each method.

On the second set of experiments, we have tested the MSE

obtained between the uncorrupted (y0) and estimated data (ŷ)

and averaged over 100 independent runs, with a fixed fraction

of outliers at 10% and for various values of the σ of the in-

lier noise, as demonstrated at table 2. Both experiments, lead

to the conclusion that KGARD is more robust as it preserves

the lowest MSE for all ranges of outlier fraction or variance

of the inlier noise. Moreover, the RAM scheme also attains

a notably low and improved MSE (compared to the simple

AM). In fact, this actually indicates that the greedy method,

i.e., KGARD, performs a better sparse approximation to the

ℓ0 norm of the sparse outlier vector, which cannot be outper-

formed by any relaxation-based method.

5. CONCLUSIONS

This work, addresses the task of non-linear regression in

the context of RKHS modeling and the presence of outliers.

The motivation of this work, is to compare the cutting edge
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Outliers % RB-RVM KGARD RAM

5% 3.17 1.16 1.25 (µ = 31)

10% 3.73 1.21 1.34 (µ = 33)

15% 3.97 1.25 1.35 (µ = 32)

20% 4.08 1.31 1.46 (µ = 28)

25% 4.35 1.49 1.65 (µ = 28)

Table 1. Mean square error (MSE) for various fractions of

outliers and σ of the inlier noise σ = 4.

σ RB-RVM KGARD RAM

0 9.21 ·10−5 2.91 · 10−13 1.05 · 10−10

(ε = 0.01, λ = 10−12) (µ = 0.005, λ = 10−6)

1 0.34 9.87 · 10−2 0.10

(ε = 5, λ = 0.001) (µ = 14, λ = 0.01)

2 1.09 0.33 0.41

(ε = 10, λ = 0.1) (µ = 20, λ = 0.01)

4 3.73 1.21 1.34

(ε = 15, λ = 0.3) (µ = 33, λ = 0.1)

6 7.47 2.61 3.07

(ε = 20, λ = 0.8) (µ = 31, λ = 0.1)

8 12.12 4.79 6.18

(ε = 20, λ = 0.8) (µ = 30, λ = 0.1)

Table 2. Mean square error (MSE) for various values of the σ

of the inlier Gaussian noise and a fraction of outliers at 10%.

methods available and measure the gains towards approxima-

tion/error reduction. We conclude, that the greedy method

performs a better sparse approximation to the ℓ0 norm of the

sparse outlier vector, which cannot be outperformed by any

relaxation-based method. Moreover, theoretical results, un-

der certain assumptions, concerning the performance of the

greedy-based approach, are reported.
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