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ABSTRACT 
 
In this paper, the problem of proportional covariance 
matrices estimation for random Gaussian complex vectors 
is investigated. The maximum likelihood estimates of the 
matrix and the scale factors are derived, and their statistical 
performances are studied, through bias, consistency and 
asymptotic distribution. It is also shown that the problem 
treated here generalizes the covariance estimation problem 
for Spherically Invariant Random Vector (SIRV). An 
iterative estimation algorithm is proposed. A simulation 
based on a detection problem is presented. The results 
suggest that the asymptotic distribution obtained is a really 
good approximation, even for a small number of data. 
 

Index Terms— Maximum likelihood estimate, 
covariance estimate, proportional covariance matrices, 
spherically invariant random vector (SIRV) 
 

1. INTRODUCTION 
 
The problem of estimating � proportional covariance 
matrices for random Gaussian complex vectors is 
considered. This problem finds applications in array 
processing and the authors were faced to it in this context. 
However, due to the lack of space, potential applications in 
array processing (such as covariance estimation in radar) 
will not be developped. The first papers to calculate the 
maximum likelihood (ML) estimates of the covariance 
matrix R and the scale factors λ�, � = 1. . �, and to propose 
a way of how to actually obtain them, are [1] and [2]. Their 
works are carried out for the case where �� = 1, and where 
the data used are real-valued. In this paper, complex data 
are considered, and no constraint is imposed on ��. This 
latter point does not have a strong impact on the calculation, 
but enables a different interpretation of the results. 

A formulation of the problem is first presented in Section 
2. In Section 3, the ML estimates are derived, and based on 
these estimates, an algorithm is proposed. Their statistical 
properties are studied, through the derivation of the bias, 
consistency and asymptotic distribution. Section 4 presents 
experimental results based on a detection problem, which 
corroborate the theoretical results presented. 
 
Notations: The notation �~ ��(�,�) means that �  is a zero 
mean complex Gaussian vector, with covariance �. 
� ~ �(�,�) means that �  follows a Wishart law of 
parameter � and expectation �. 
Operator �(. ) and ��(. ) stand for expectation and trace. 

.� denotes the transpose conjugate operator. 
�
→  denotes 

convergence in probability. 
 
 

2. PROBLEM FORMULATION 
 
Let {��,�,… ,��,��

}  , …,  {�� ,�,… ,�� ,� �
} be M sets of 

independent �-dimensional zero-mean random gaussian 
complex vectors with equal unknown covariance matrices, 
up to unknown scale factors:  

 ��,�~ ��(�,���)   (1) 

where �� , � are unknown, and must be estimated. For that 
purpose, a maximum likelihood procedure will be followed 
and the estimates statistical properties will be investigated.  
It can be noticed that a constraint must be imposed on  � 
and its estimate  �� to avoid over-parameterization, such as, 

for instance, a constraint on their traces. In this paper, the 
constraint used will be in the form of: 

 ��(��) = ������� = �   (2) 
where  �   will be either  �  (in practice) or  �-�  (for 
theoretical purpose only, since it is not available in real 
life). 

The next section derives the ML estimates of �� and  �, 
as well as an iterative algorithm to obtain them. Their 
statistical properties are also investigated. In the paper, the 
Sample Covariance Matrices (SCM) of the different data-
sets will be noted R�� , 

 �� � =
�

��
∑ ��,���,� �

��
���   (3) 

and we will set 

 � = ∑ ��
�
���   (4) 

�� � follows a complex Wishart distribution with �� degrees 
of freedom and expectation ���.  

It can be noticed that our problem is a generalization of 
a problem well-investigated in the recent signal processing 
literature. Indeed, the case  �� = �� = ⋯ = �� = 1 leads 
to a SIRV (Spherically Invariant Random Vector) model, 
for which the ML estimates have been derived and 
theoretically analyzed [3][4][5]. Examples of application 
can be found in [6] and [7], where the authors consider sets 
of compound-Gaussian (included in SIRV model) data with 
proportional covariance matrices, which they have to 
estimate for constant false alarm rate detection purpose. 
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3. MAXIMUM LIKELIHOOD ESTIMATES 
 
Let � be the negated log-likelihood. We have: 

  
� = ∑ (�����(�)+  ���ln(��)

�
��� +

��ln(|�|)+
��

��
��(�� ����)).  (5) 

ML estimates minimize �. Optimization over ��  leads to: 

  

�� =
��� �� �����

�
. (6) 

By substituting ��  into �, we get: 

  

� = � (�����(�)+  ���ln �
��� �� ��

���

�
�

�

���

 

+��ln(|�|)+ ���). (7) 
To optimize � with respect to �, let us differentiate  the 
above expression: 

  

d� = �� �(���� −

∑
���

����������
����� ����)���

��� �. (8) 

Cancelling the differential for all �� leads to the estimate 
�� of �: 

  

�� =
�

�
∑

��

��(�� �����)
�� �

�
���  (9) 

A few remarks can be made about the above expression: 
 Remark 1: (9) doesn’t give an explicit solution for 

��, and one has to resort to an iterative procedure 
which will be detailed in section 3.1. 

 Remark 2:  As already mentioned in the 
introduction, if �� is solution, then α��  is also 
solution: a constraint must be imposed, such as 
(2).  

 Remark 3: (9) also gives: 

�
��/�

���
��/�

=
�

�
∑ ���

��/�
�� ��

��/�
/�

���

�� ��
��/�

 �� ��
��/�

��
��/�

���
��/�

�
��

�  (10) 

which means that if �� is solution,  �
-�/�

���
-�/�

 is 

solution of a similar expression, where �� � is 

replaced with �
-�/�

�� ��
-�/�

which follows a 

complex Wishart law, with �� degrees of freedom, 
and expectation ���. 

 Remark 4: Notice also that in the SIRV case (�� =
1) (9) provides the Fixed Point Estimate (see for 
example [4]).  

 Remark 5: �� is unchanged in (9) if we replace 

�� �by 
�

��
�� � which is �(��,�) distributed. Thus, 

we can assume without loss of generality that 
�� �~ �(��,�) in (9): this will be assumed when 
studying the statistical properties of ��. 

The unicity of the solution of (9) has been proved for the 
real data case in [2], and could be extended in the complex 
case. This solution will be called the Generalized Fixed 

Point Estimate (GPFE), to distinguish it from the Fixed 
Point Estimate corresponding to the case �� = 1.  

 
3.1. The Generalized Fixed Point Estimate 
 
The proposed iterative procedure is an alternate 

maximization algorithm. At iteration �, let ���
(�)

 be the 

estimate of �� and ��(�) the estimate of �. Maximizing the 
likelihood with respect to �� for fixed � = ��(�) leads to: 

 ���
(���)

= �� � �� ��(�)��
� /�    (11) 

and maximizing the likelihood with respect to � for fixed 

�� = ���
(���)

 leads to 

 

 ��(���) =
1
�

∑
��

���
(�+1)�� �  �

���  (12) 

which can be rewritten into: 

 ��(���) =
�
�

∑
��

��� �� ��
(�)− 1

�

�� �  �
��� . (13) 

  
It should be noted that each iteration increases the 
likelihood. A proof of convergence in the real data case can 
be found in [2]. 
 
3.2. Statistical properties 
 
From remarks 2 and 3 following equation (9), studying  �� 

statistical properties when �� � is replaced by �
��/�

�� ��
��/�

 

and � = � is sufficient. Therefore, whithout loss of 
generality, we will assume that �� � in (9) is complex 
Wishart distributed, with �� degrees of freedom, and 
expectation ���. In the following subsection, consistency as 
well as asymptotical distribution are derived, under the 
following conditions: 

  �� → ∞ with
��

�
→ ��  (14) 

and with the normalization constraint ��(��) = �. 
First, the bias of the estimate is derived. 
 
3.2.1. Bias 
 

Unbiasedness: ��  is an unbiased estimate of  �.  
 
Proof:  
 
Let � be a unitary matrix. From (9), 

 ����� =
�

�
∑

��

��(��� ����������
��

 )
��� ���. (15) 

 
Since ��� ��

� follows the same Wishart distribution as R��, 
�����  follows the same distribution as ��. Therefore, we 
have, whatever the unitary matrix is: 

 
∀� unitary,E������� = E����

 ⇒ ∀� unitary,�E������ = E����
. (16) 

 
Let E���� = ∑ ������

� be the eigendecomposition of �(��). 

Suppose that there exist 2 eigenvalues �� and �� such that 
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 �� ≠ ��. (17) 
Let � be the unitary matrix such that  

  

�

��� = ��

��� = ��

∀� ≠ 1,2,��� = ��

.  (18) 

Then, from (16):  

�������� = �����

⇒ ������
� + ������

� = ������
� + ������

�

⇒ �� = ��

  (19) 
  

which is in contradiction with (17). Thus: 
 ∀�,� �� = �� = � (20) 

And since ��(��) = �, 

  � = 1. (21) 
Finally, we have: 

 ����� = �. (22) 

 
3.2.2. Consistency of the GFPE 
 
Consistency: �� is a consistent estimate of  �. 
 
Proof:  
To check the consistency of the estimate, we study the limit 

of (9) in probability when �� → ∞, with 
��

�
→ ��.Let 

�� �be the limit of �� under these conditions. 
Since ��~ �(��,�) (see remark 5 in Section 3), it follows 
that: 

 �� �

�
→ � when �� → ∞.   (23) 

Taking the limit of (9), we obtain: 

 �� � = � ∑ ��
�

��� �� �
��

�
 �

��� . (24) 

Hence, �� � is proportional to �, and the normalization 

constraint on  ��  leads to: 

  
 �� � = �. (25) 
 
3.2.3. Normalized Wishart matrices and their properties 
 
The asymptotic distribution of the GFPE is related to the 
complex Wishart distribution, as will be seen in the next 
section. For that purpose, some useful properties of Wishart 
matrices are presented in this section. 
 

Definition: Let ��~ �(�,�). The matrix ��� =
�

��(�����)
��  is 

said to follow a normalized complex Wishart distribution 
denoted by ���~ ��(�,�). 
 
Properties: 

Let ��~ �(�,�), Δ� = �� − �,  Δ�� = ��� − �. Then we 
have the following properties:  

 �(��
�

) = �  (26)  

 ���

�
→ � when � → ∞ (27) 

 Δ�� = Δ� −
�

�
��(Δ�)� (28) 

when  limiting to first order with respect to Δ�. 
 
Proof:  
Proof of (26) is similar to the proof of the GFPE 
unbiasedness. 
Proof of (27) and (28) are obvious. 
 
3.2.3. Asymptotic distribution of the GFPE 
 
Asymptotic distribution: the asymptotic distribution of the 
GFPE  �� is ��(�,�) . 
 
Proof: 
In this section, a perturbation analysis is performed to 
derive the asymptotic distribution of the estimate. Let us 

remind that �� is the solution of (9): �� =
�

�
∑

��

��(�������)
�� �, 

where matrices �� � are independent complex Wishart 
distributed  �(��,�). 
 
For large ��’s, we have: 
 �� = � + Δ�  (29) 
with Δ� small since the estimate is consistent, and: 
 �� � = � + Δ��  (30) 
with Δ�� small for these Wishart matrices. A first order 
expansion of (9) with respect to Δ� and  Δ�� can thus be 
derived: 

� + Δ�≈
�
�

∑ ��
�+Δ��

��(� �+Δ��)(�− Δ�)�
 �

���

≈
1

�
∑ ��(1 −

1

�
��(Δ��)+

1

�
��(Δ�))(� + Δ�� )

�
�=�

≈
1

�
∑ ��(� + Δ��  −

1

�
�
�=� ��(Δ��)� +

1

�
��(Δ�)�

.

   (31) 
Since ∑ �� = �� , (31) can be simplified into: 

 Δ� −
�

�
��(Δ�)� ≈

�

�
∑ ��(Δ��  −

�

�

�
��� ��(Δ��)�.    (32) 

Furthermore, ������ = � implies that ��(Δ�) = 0, so 
that: 

 Δ� ≈
1

�
∑ ��(Δ��  −

�

�

�
��� ��(Δ��)�. (33) 

Based on Wishart matrices properties, we have: 
 

 
�

�
∑ ���� � = ��~ �(�,�) �

���  (34) 

so that: 

 
�

�
∑ ��Δ�� = Δ� �

���  (35) 

and thus: 

 Δ� = Δ� −
�

�
��(Δ�)�   (36) 

which is equal to Δ�� in (28). Therefore, �� has the same 
asymptotical distribution as that of a complex normalized 
Wishart matrix.  
 

4. SIMULATION 
 

To illustrate the above theoretical results, we consider an 
application in the context of array processing which is met  
in radar detection. Let us consider the problem of detecting 
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a known signal � ∈ C� corrupted by Gaussian clutter, 
which can be stated as the following binary hypothesis test:  

�
��: � = �, ��,� = ��,� for1 < � < ��,� = 1,2

��:� = �� + �,��,� = ��,� for1 < � < ��,� = 1,2
 

where � is the complex �-vector of the received signal, � 
is an unknown complex target amplitude, � stands for the 
known “steering vector”, �~ �(0,�)  is the clutter in the 
primary data, and  ��,�~ �(0,���) are target free secondary 
data available for clutter covariance estimation. In this 
model, we assume that the   ��,�’s have been gathered in 
two subsets of size �� which share the same unknown 
covariance matrix � up to an unknown scale factor ��.In 
this context, one can resort to the Adaptive Normalized 
Matched Filter (ANMF) [8] in which we use the secondary 
data to estimate the unknown covariance matrix � by 
means of our GFPE �� (9) through the iterative procedure 
(12): 

 

 �(��)=
���������

�

������������������

>��

<��

�.  (37) 

 
Our results prove that the statistics of �(��) are 
asymptotically (for large �� and ��) the same as �(���) 
where ��� is ��(�� + ��,�), which are also the same as the 
statistics of �(��), where ��  is �(�� + ��,�) . To verify 
this, the empirical cumulative distribution of  �(��) is 
compared to the exact distribution of �(��) given in [8]. We 
recall that the exact distribution of �(��) does not depend 
on � nor �.  
In the simulations, we have � = 4, �� = �� = 2. The 
figure display the threshold-false alarm rate relations for 

1/�1 − ������
�

 (black curve based on 100000 trials) and 

1/�1 − ������
�

 (dashed red curve) based on the 

theoretical distribution given in [8]. Despite the extremely 
small values for �� and ��, we notice a surprising 
agreement between the two curves: this demonstrates  the 
interest of our asymptotic result which turns out to be valid 
with only , �� = �� = 2 data.  
 

5. CONCLUSION 
 
In this paper, the problem of estimating proportional 
covariance matrices was considered. The maximum 
likelihood estimates of the covariance matrix and the scale 
factors were derived, as well as their statistical properties. 
Another interesting result was that the covariance 
estimation for SIRV model problem is a subcase of the 
problem treated here. A simulation based on a detection 
problem is presented, which suggests that the asymptotic 
distribution derived in this paper is valid, even for a very 
small data number. 

 

Fig. 1.  PFA (vertical axis) evolution with �/(� − �)� (horizontal 
axis). Dashed red curve represents the probability of false alarm 

(ordinate) against �/�� − ������
�

(absciss). Black curve 

represents the probability of false alarm (ordinate) against 

1/�� − �(��)�
�

 , based on 100000 trials. 
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