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ABSTRACT

Infrared spectroscopy can provide useful information of
the biomass composition and has been extensively used in
several domains such as biology, food science, pharmaceutical,
petrochemical, agricultural applications, etc. However, not
all spectral information are valuable for biomarkers construc-
tion or for applying regression or classification models and
by identifying interesting wavenumbers a better processing
and interpretation can be achieved. The selection of optimal
subsets has been addressed through several variable or fea-
ture selection methods including genetic algorithms. Some of
them are not adapted on large data, others require additional
information such as concentrations or are difficult to tune.

This paper proposes an alternative approach by considering
a weighted Euclidean distance. We show on real Mid-infrared
spectra that this constrained nonlinear optimizer allows identi-
fying the wavenumbers that best highlights the discrimination
within the periods of the biodegradation process of the ligno-
cellulosic biomass. These results are compared with previous
ones obtained by a genetic algorithm.

Index Terms— Weighted Euclidean distance, feature se-
lection method, genetic algorithm, infrared spectra, biodegra-
dation process, lignocellulosic biomass.

1. INTRODUCTION

InfraRed (IR) spectroscopy provides useful information of the
molecular composition of biological systems and has been
widely used in several domains such as biology, food sci-
ence, pharmaceutical, petrochemical, etc. For agricultural
applications, Mid-InfraRed (MIR) spectroscopy, 400 cm−1 to
4000 cm−1, highlights the absorption of fundamental bands
of molecular vibrations that are specific of chemical bonds.
Being sensitive to both organic constituents (lignocellulose
and soil organic matter) and mineral components (soil mineral
phase), MIR is considered to be able to provide a performant

The research for this paper was financially supported by the EMER-
GENCE SSELVES Grant of the Champagne-Ardenne Regional Council,
France.

tool in biomass analysis with relevant qualitative information
in prediction models [1].

MIR has a growing interest for development of biomarkers
related to intrinsic characteristics of plants and their mode of
degradation. Development of rapid and robust MIR biomarkers
is a crucial issue that applies to various industrial challenges
including biorefineries, biotechnologies and environment, for
example emission of greenhouse gases from soils [2, 3]. How-
ever, it is commonly assumed that not all spectral information
is valuable for biomarkers construction and by identifying in-
teresting wavenumbers, the degradation of the biomass can be
better evaluated.

Selection of interesting wavenumbers can be done by vari-
able or feature selection methods such as subset models, step-
wise (multiple linear regression) methods, successive projec-
tions algorithm, competitive adaptive reweighted sampling,
variable importance for projection, uninformative variable
elimination, (backward/forward or moving window) interval
partial least squares regression, simulated annealing, artifi-
cial neural networks-based methods, etc [4, 5, 6]. However,
some of these methods require additional information such as
concentrations or they do not scale correctly on large data.

The genetic algorithm (GA) is an interesting alternative
heuristic optimization technique that has the advantage of ex-
ploring the space of all possible wavenumbers subsets fairly
well in a large but reasonable amount of time. GA is revealed
to be a highly effective method [4] and has been successfully
applied to many frequency selection problems including the
evaluation of the biodegradation of biomass through MIR and
NIR spectra [7]. However, one of the main drawback is that
GA requires numerous steps such as selection through a fit-
ness function, crossover and mutation scheme, which can be
addressed in different ways, as well as numerous parameters:
initial population size, number and size of chromosomes, num-
ber of generations through which the process is allowed, etc.
The sizes of chromosome and population were selected after
evaluating the GA for different sizes and choosing those that
give the minimum fitness function’s value. The cross-over rate
or mutation rate are parameters which should be set up care-
fully. Genetic algorithms are thus difficult to tune. Besides,
the GA makes a huge a priori assumption about the shape of
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the interesting features, that is a few sparse entries of vector.
This paper proposes an alternative approach based on a

constrained nonlinear optimizer. Selecting a set of entries of
the data vectors in order to better separate the clusters can
be seen as modifying the distance between the input vectors.
This distance can be constrained to be a weighted Euclidean
distance and other constraints such as `∞ norm or `1 norm
may be considered for the weights.

From an application’s point of view, the objective of this
study is to investigate the potential of such approach in order
to identify the wavenumbers that best highlights the discrim-
ination within the periods of the degradation process of the
lignocellulosic biomass. Because biodegradation is a dynamic
process, one of the challenges is to capture the changes in
the spectra over time to then be able to predict the extent of
biomass degradation. We show that the proposed alternative
highlights the same principal vibrations of chemical functional
groups of compounds that undergo degradation/conversion
during the biodegradation of the lignocellulosic biomass, al-
lowing however a better discrimination within the periods of
the degradation process than considering the wavenumbers
selected by GA.

2. DESCRIPTION OF THE METHOD

Our method is described in this section by, first, setting up the
data model and by presenting the classical Davies-Bouldin in-
dex. The objectives is then presented with a solution proposed
in a previous paper [7]. The new solution is then described.

2.1. Data model and DB criterion

The dataset is given as a collection of M points X1, . . . XM ,
which are real vectors of length N . Each data Xi is labeled by
a class number k between 1 and K.

The labeling partitions naturally the data into clusters
C1, . . . , CK . The location of each cluster is given by its cen-
troid Ak. The scatter of the data points of the k-th cluster Ck

may be evaluated with the mean distance to the centroid,

Sk =
1

|Ck|
∑

X∈Ck

d(X,Ak), (1)

where |Ck| is the size of the cluster.
The pairwise distance between cluster’s centroids Mi,j =

d(Ai, Aj), provides a measurement of how far the clusters i
and j are each other.

Using the previous measurements, the good separation of
the clusters may be evaluated thanks to the Davies-Bouldin
(DB) index [8] which computes the mean maximum ratio be-
tween the scatter of two clusters and their centroid’s distances,

DB(X, d) =
1

K

K∑
k=1

max
k′ 6=k

Sk + Sk′

Mk,k′
. (2)

As can be read from its definition, lower Davies-Bouldin
indices indicate better separations of the clusters. Other criteria
may be used in order to evaluated the separation between
clusters such as the Dunn index, the Fisher ratio or other
validity indices [9].

2.2. Objective and previous approach

Given the dataset and the labeling, the Davies-Bouldin index
indicate how well the clusters are apart. The objectives is to
find the specific features of the dataset which gives the best
separation of the clusters.

A genetic algorithm was chosen in [7] in order to select
these features. In these case, the features are the entries of the
data vectorsXi. The algorithm peeks less than a decade entries
among the 520 coordinates and build a new dataset using only
the sub-vectors that correspond to these entries. The feature
selection is done in order to minimize the Davies-Bouldin
index. This was imposed by the fact that we want to group
the samples for each period of biodegradation and separate
them according to the different periods of the biodegradation
process.

GA are a type of evolutionary optimization computation
based on the concept of natural selection of solutions. Each
solution may be considered as a population where each element
is represented in the form of a chromosome, with selected data
vector entries as genes. The steps of the GA reproduce the
various evolutionary operations such as crossover and mutation
allowing to select for each generation the best chromosomes
and to identify at the end and optimal chromosome with respect
to an optimization criterion defined by a fitness function.

This solution gives very good results and the entries se-
lected by the GA have a meaningful chemical interpretation,
see [7] and below. However, this solution makes a huge a
priori assumption about the shape of the interesting features,
that is a few sparse entries of vector.

GA is also difficult to tune. Its population size or the cross-
over rate or mutation rate are parameters which should be set
up carefully. The chromosome representation is also sensitive
to the application: in the paper [7], either an entry is selected
or not.

2.3. Our new approach

Selecting a set of entries of the data vectors in order to com-
pute the Davies-Bouldin index can be seen as modifying the
distance d(·, ·) between the input vectors. Indeed, let E be the
set of selected entries of data vectors, the distance dE(x, y)
between vectors x = (x1, . . . , xN )T and y = (y1, . . . , yN )T

is given by,

dE(x, y)
2 =

∑
i∈E

(
xi − yi

)2
. (3)
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Therefore, the genetic algorithm [7] seeks the optimum

Eopt = argmin
E
DB

(
X, dE(·, ·)

)
such that |E| = e,

(4)

where e is the number of entries to be selected. It is a parameter
set by the operator.

This new point of view developed above about the method
of [7] allows a simple generalization of the optimization. In-
deed, our new method is given by the problem

dopt(·, ·) = arg min
d(·,·)

DB
(
X, d(·, ·)

)
such that d(·, ·) is a suitable distance.

(5)

Of course, the “suitable” distance is application specific
and the space of distance should be constrained enough in
order to be meaningful. Otherwise, a distance function which
assigns 0 for vector inside the same cluster and 1 for vectors
belonging to distinct clusters is optimal for the Davies-Bouldin
index while this distance is useless.

In order to be more specific for the application described
below, the distance d(·, ·) is constrained to be a weighted
Euclidean distance,

dw(x, y)
2 =

∑
i

wi (xi − yi)2. (6)

If the weight wi are 0/1 valued, the dw(·, ·) distance is equiva-
lent to a dE(·, ·) distance used by the previous method.

Using the distance dw(·, ·), our method relies on the fol-
lowing optimization problem,

wopt = argmin
w
DB

(
X, dw(·, ·)

)
such that

{
0 ≤ wi for 1 ≤ i ≤ N
others constraints,

(7)

where the others constraints may be normalization constraints
such as `2 or `1 norm:

∑
i w

2
i = 1 or

∑
i |wi| = 1 respectively.

The weights may also be limited in magnitude, wi < 1, also
known as `∞ norm constraint. The choice of future constraints
depends on the application.

Remark that the method may be looked at as a kind of
kernel trick. The data points Xi are mapped by φ into another
metric space, the feature space, and our method tries to find the
best map φ according to the Davies-Bouldin index. For exam-
ple, the distance dw(x, y) is the Euclidean distance between
φw(x) and φw(y) where φw(x) =

(√
w1x1, . . . ,

√
wN xN

)T
.

3. APPLICATION

3.1. Mid-infrared spectra of lignocellulosic biomass

Maize (Zea mays L.) roots samples from two inbred parental
lines (F2 and F292) and two mutants of these lines (F2bm1

and F292bm3) represent the lignocellulosic biomass that has
been analyzed at K = 5 periods of biodegradation in soil: 0,
14, 36, 57 and 112 days [10]. Samples were dried at 40 ◦C
in a ventilated oven for 3 days and ground to 80 µm prior to
Diffusion Reflectance Infrared Fourier Transformed (DRIFT)
spectroscopy using an IRTF Nicolet 6700 Thermo electron
spectrometer. All spectra (64 accumulations for each sample)
were acquired with a spectral resolution of 4 cm−1. The MIR
wavenumber region was chosen to be 800 cm−1 to 1800 cm−1,
which corresponds to the principal vibrations of chemical func-
tional groups associated to the lignocellulosic components [11].
The dataset is made up by 4× 5 spectra.

All spectra were preprocessed with a first-order Savitzky-
Golay filter with a fourth order polynomial and a smoothing of
17 points, followed by a Standard Normal Variate preprocess-
ing, which have been used in the previous investigation [7].

Visualization of the clusters of this data set can be done
thanks to the multidimensional scaling (MDS) [12] as shown
in Figure 1(a). This representation can be linked with a scatter
plot obtained by a principal component analysis. Samples at
each period of the biodegradation process are represented with
the same symbol and color.

3.2. Previous results

On this data set, the method based on the genetic algorithm
allowed to identify the following wavenumbers [7]:
• 860 cm−1: aromatic skeletal vibrations combined with CH

wag,

• 953 cm−1: C-O-C stretching of the polysaccharides,

• 1385 cm−1: cellulose with lignin (Aliphatic CH stretching
in CH3),

• 1709 cm−1: hemicellulose (C=O stretching unconjugated
ketones, carbonyls and in ester.
These wavenumbers correspond to principal vibrations of

chemical functional groups of compounds that undergo degra-
dation/conversion during the biodegradation of the lignocellu-
losic biomass. The discrimination of the samples according to
the periods of the biodegradation process is highly improved,
as emphasized by the MDS shown in Figure 1(b) as compared
with the result obtained using the entire MIR wavenumber
region (see Figure 1(a)). This is obvious when examining the
DB index values. As was pointed out [7], not all spectral in-
formation is valuable; by identifying interesting wavenumbers,
we can better describe the effect of the degradation time on
biomass characteristics.

Beside the choice of adapted steps, the genetic algorithm
required numerous parameters. The maximum number of
generations, the fraction of crossover, the number of elites, and
the stop parameters were empirically chosen, see [7]. The sizes
of chromosome and population were selected after evaluating
the GA for different sizes and choosing those that gave the
minimum fitness function’s value, as it usually done with GA.
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Fig. 1. Discrimination of samples according to the periods of the biodegradation process (+: t = 0; 2: t = 14; o: t = 36; ∗: t = 57;
and �: t = 112 days). MDS obtained on: (a) entire MIR wavenumber region, DB index= 1.5654; (b) wavenumbers identified by
the GA on the same dataset [7], DB index= 0.6037; (c) wavenumbers identified by the proposed approach such that 0 ≤ wi, DB
index= 0.5861; (d) wavenumbers identified by the proposed approach such that 0 ≤ wi and

∑
i |wi| = 1, DB index= 0.5578

3.3. Results with the proposed approach

The approach presented in Eq. (7) was applied on the same
data set in a first instance without any normalization constraint.
Optimization are performed using a toolbox implementing the
sequential quadratic programming method (SQP). Contrary to
the GA, which makes a priori assumption about the shape of
the interesting features, i.e. few sparse entries of vector, this
approach does not impose any particular shape on the weights
wi.

Figure 2(c), shows the distribution of the resulting weights
wi. Comparing with results obtained by the GA (shown in
Figure 2(b)) we find out that the same spectral information are
highlighted, with some slight differences. Firstly, the informa-
tion at 1385 cm−1 (cellulose with lignin) is the most predomi-
nant, both in amplitude and width, as the neighboring bins at
1383 cm−1 is also identified. This is an interesting result since
it is known that the cellulose changes with the biodegradation
time. Secondly, a small “bump” around 912 cm−1: cellulose,
hemicellulose, lignin (Anomere C-groups, C-H deformation
with ring valence vibration) appears. This is also another in-
teresting result since we put into evidence another principal
vibrations of chemical functional groups of compounds that
undergo degradation/conversion during the biodegradation of
the lignocellulosic biomass.

With this new information, the discrimination of the sam-

ples (see figure Figure 1(c)) according to the periods of the
biodegradation process is further enhanced, the DB index value
decreasing from 0.6037 (with the GA) to 0.5861. However,
without taking the DB index into consideration, a better dis-
crimination can be found for GA since the 5 classes are not
overlapped. Numerically, both algorithms try to minimize the
DB index, which represents the mean maximum ratio between
the scatter of the clusters and their centroid’s distances. For
the proposed approach, the DB index is lower since samples
are better gathered at quite all periods of the biodegradation
process, especially at t=14, 36 and 112 days (green, blue, and
cyan). This is due to the fact that the approach allows to esti-
mate relative weights associated to the wavenumbers. Besides,
it is not easy to identify the predominant functional group that
appeared around 912 cm−1.

For this reason, we have applied the proposed approach
considering a complementary `1 normalization constraint. Re-
sult shown in Figure 1(d) indicates that the discrimination of
the samples according to the periods of the biodegradation
process has been slightly improved. Samples within a class are
more grouped, the DB index value lowering to 0.5578. The
small “bump” identified previously was transformed into a
“pick” at 912 cm−1 (see Figure 2(d)) which, although small,
highlights the cellulose, hemicellulose, and lignin. As previ-
ously, the information at 1385 cm−1 (cellulose with lignin)
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Fig. 2. (a): the 20 preprocessed spectra recorded on the 4
samples at the K = 5 periods of biodegradation in soil. (b):
positions of wavenumbers identified by the GA (previous re-
sult). (c): weights wi identified by the proposed approach with
0 ≤ wi. (d) weights wi identified by the proposed approach
with 0 ≤ wi and

∑
i |wi| = 1

is the most predominant, however is constrained here due to
the `1 norm to only one bin. However, without taking the DB
index into consideration, a better discrimination can always
be found for GA. This can be explained by the fact that the
kinetic of the degradation is not taken into consideration by
the criterion itself. While the proposed approach allows to es-
timate relative weights, the DB criterion that both algorithms
try to minimize does not take into account the mineralization
process, which presents a maximum around t = [14, 21] days
and similar values (depending on the specimen) at t=0 and t
around 40 days, which can a posteriori justify that the over-
lapped classes in Figure 1(c) might be a positive result, but
further works should be carried out.

4. CONCLUSION

We consider the problem of finding an appropriate alternative
distance metric that takes into consideration the distribution of
our real mid-infrared spectra.

We presented a study experiment in order to examine the
impact of different term weighting schemes on the clustering
quality. The underlined values of Davies-Bouldin index indi-
cate that a complementary `1 normalization constraint achieves
a good numerical performance in those experiments in com-
parison with the results provided by the genetic algorithm.

The new method strengthens the choice of a set of
wavenumbers as the best features to be selected. More-
over, new information is added by this method compared to
the GA approach: the relative weights associated with the
wavenumbers permits to sort their relative impacts.
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