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ABSTRACT

In this paper, we consider a functional link-based architecture

that separates the linear and nonlinear filterings and exploits

any sparse representation of functional links. We focus our

attention on the nonlinear path in order to improve the mod-

eling performance of the overall architecture. To this end, we

propose a new scheme that involves the adaptive combination

of filters downstream of the nonlinear expansion. This combi-

nation enhances the sparse representation of functional links

according to how much distorted the input signal is, thus im-

proving the nonlinear modeling performance in case of time-

varying nonlinear systems. Experimental results show the

performance improvement produced by the proposed model.

Index Terms— Nonlinear Adaptive Filtering, Functional

Links, Linear-in-the-Parameters Nonlinear Filters, Sparse

Representations, Adaptive Combination of Filters

1. INTRODUCTION

Online learning for nonlinear system modeling has always

drawn a great interest due to a wide range of applications that

can be found in this field. One of the most popular models

for nonlinear system identification is the class of linear-in-

the-parameters (LIP) nonlinear filters [1, 2], which is charac-

terized by a linear filtering of any nonlinear representation of

the input signal. Among this class of filters, several models

have been proposed, including adaptive Volterra filters [1, 3],

even mirror Fourier nonlinear filters [4], Hammerstein spline

adaptive filters [5], online extreme learning machines [6] and

Legendre nonlinear filters [7], among others.

In this work, we focus on a class of LIP nonlinear adap-

tive filters based on functional links, known as functional link

artificial neural network (FLANN) filters [8], or also as func-

tional link adaptive filters (FLAFs) [9]. These filters are char-

acterized by a nonlinear expansion of the input followed by a

linear filtering of the expanded signal. In particular, we take
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into account a split FLAF (SFLAF) architecture [9], which

separates the adaptation of linear and nonlinear elements.

Based on the nonlinearity level introduced by any system

to be modeled, the functional links involved in a SFLAF may

show a sparse representation, i.e., only a selection of them is

really useful to model a nonlinear system. This is the rea-

son why the proportionate SFLAF (PSFLAF) has been in-

troduced [10] to exploit such sparse functional link represen-

tations. Here, we propose a new architecture that improves

the nonlinear modeling performance of the PSFLAF. Such

scheme, called combined PSFLAF (cPSFLAF), is character-

ized by a convex combination of two proportionate adaptive

filters [11, 12] downstream of the functional expansion. This

leads to a more general model to be used regardless of any

nonlinearity level caused by the unknown system. Results

show effectiveness and robustness of the proposed model in a

time-varying nonlinear system identification scenario.

The rest of the paper is organized as follows: the PSFLAF

exploiting sparse functional link representations is described

in Section 2. In Section 3, the proposed cPSFLAF scheme is

introduced, and, in Section 4, experimental results are shown.

Finally, in Section 5 our conclusions are presented.

2. NONLINEAR MODELING BY SPARSE

REPRESENTATION OF FUNCTIONAL LINKS

Very often in real-world problems, the response of a system

to be identified is produced by any combination of a linear

and nonlinear components. In order to model such a system,

the split functional link adaptive filter (SFLAF) architecture

was recently proposed [9]. The SFLAF, depicted in Fig. 1, is

a parallel architecture including a linear path and a nonlinear

path. The former is simply composed of a linear adaptive

filter, which is devoted to model the linear components of an

unknown system. This allows the nonlinear path to be focused

on the modeling of the nonlinear components of the system.

At n-th time instant the SFLAF receives the input sample

x [n], which is stored in the linear input buffer xL,n ∈ R
M =

[

x [n] . . . x [n−M + 1]
]T

, where M is the length of
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Fig. 1. The split functional link adaptive filter.

the adaptive filter wL,n =
[

wL,0 [n] . . . wL,M−1 [n]
]T

.

The adaptive filtering yields the linear output yL [n] =
xT

L,nwL,n−1. The input x [n] is also stored in xN,n =
[

x [n] . . . x [n−Mi + 1]
]T

, where Mi is defined as the

input buffer length. This signal is processed by a functional

expansion block (FEB), which consists of a set of functional

links Φ =
{

ϕ
0
(·) , . . . ,ϕ

Qf−1
(·)

}

, where Qf is the num-

ber of functional links. Each element of xN,n is expanded

by the chosen set of functions Φ, thus yielding the subvec-

tors gi,n =
[

ϕ
0
(x [n− i]) . . . ϕ

Qf−1
(x [n− i])

]

. The

concatenation of all the subvectors, for i = 0, . . . ,Mi − 1,

yields an expanded buffer gn ∈ R
Me :

gn =
[

gT
0,n gT

1,n . . . gT
Mi−1,n

]T

=
[

g0 [n] g1 [n] . . . gMe−1 [n]
]T

,
(1)

where Me ≥ Mi represents the length of this expanded buffer.

Note that Me = Mi only when Qf = 1.

Several choices can be made for the functional expansion

in the FEB. Here, we use a nonlinear trigonometric series ex-

pansion such that:

ϕ
j
(x [n− i]) =

{

sin (pπx [n− i]) , j = 2p− 2
cos (pπx [n− i]) , j = 2p− 1

(2)

where p = 1, . . . , P is the expansion index, being P the ex-

pansion order, and j = 0, . . . , Qf − 1 is the functional link

index. In the case of trigonometric expansion, it is easy to ver-

ify that the set Φ is composed of Qf = 2P functional links.

It is worth noting that gn is composed of nonlinear el-

ements only, since the linear part of a system to identified

can be demanded to the linear path. The achieved expanded

buffer gn is then fed into an adaptive filter wFL,n ∈ R
Me =

[

wFL,0 [n] . . . wFL,Me−1 [n]
]T

, thus providing the non-

linear output yFL [n] = gT
nwFL,n−1.

The overall error signal of the SFLAF is:

e [n] = d [n]− y [n]

= d [n]− xT
L,nwL,n−1 − gT

nwFL,n−1
(3)

where y [n] stands for the overall SFLAF output signal, result-

ing from the sum of the two path outputs. Both adaptive filters

try to minimize the power of e [n], and this can be realized

following different adaptation schemes. However, in order to

focus on the nonlinear path we choose a classic normalized

least-mean square (NLMS) algorithm for wL,n. Hence:

wL,n = wL,n−1 + µL

xL,ne [n]

xT
L,nxL,n + δL

(4)

where δL is a regularization factor and 0 < µL < 2 is a step-

size parameter.

When nonlinearities introduced by the unknown system

are varying in time and/or in amplitude, the nonlinear ele-

ments generated by the FEB and stored in gn may be not

all useful in the same way for the modeling, and this may

cause a performance decrease. A possible solution is the use

of a weighted mask for the filter of the nonlinear path [10],

in an attempt to give more prominence to those nonlinear el-

ements of the expanded buffer that have an active role in the

modeling of nonlinearities. This means taking advantage of

a sparse representation of functional links. To this end, the

update equation of wFL,n can be written as [10]:

wFL,n = wFL,n−1 + µFL

Qngn

gT
nQngn + δPFL

e [n] (5)

where δPFL is a regularization factor, 0 < µFL < 2 − µL is a

step-size parameter [10], and

Qn = diag
{

q0 [n] . . . qMe−1 [n]
}

, (6)

is the proportionate matrix that performs a mask on the filter

according to its sparsity, whose goal is to weight the coeffi-

cients of wFL,n proportionally to the contribution they pro-

vide to the nonlinear modeling. For this reason, we denote

this architecture as proportionate SFLAF (PSFLAF).

The diagonal elements of Qn are computed by evaluat-

ing the nonlinear filter estimate at the previous time instant.

The larger a coefficient value of wFL,n−1, the higher the cor-

responding weighting. Note that when sparsity is not consid-

ered, Qn = I and the PSFLAF turns into a SFLAF model [9].

In this paper, the choice of the diagonal elements of (6)

derives directly from the improved proportionate normalized

least mean square (IPNLMS) algorithm [13], but any other

proportionate algorithm may be used. Based on the IPNLMS,

the diagonal elements of Qn can be achieved as:

ql [n] =
1− ρ

2Me

+ (1 + ρ)
|wFL,l [n− 1]|

2 ‖wFL,n−1‖1 + ξ
(7)

with l = 0, . . . ,Me − 1 and −1 ≤ ρ ≤ 1; and ξ is a small

positive constant that avoids divisions by zero. The propor-

tionality factor ρ balances the proportionality, since when its

value is close to 1 a high sparsity degree is assumed, while

when ρ = −1 the adaptation follows the NLMS rule. The

proportionality factor also affects the choice of the regular-

ization parameter δPFL in (5), since δPFL = δFL (1− ρ) /2Me,

where δFL is the regularization factor that might be used for a

FLAF.
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3. THE COMBINED PROPORTIONATE SFLAF

The SFLAF is the simplest nonlinear architecture based on

functional links. However, more complex structures can be

thought. Here, we propose a variant of the SFLAF, in which

we exploit the combination of adaptive filters to improve the

nonlinear modeling performance. The new architecture, de-

noted as combined PSFLAF (cPSFLAF), is depicted in Fig. 2,

where it is possible to notice that, similarly to the SFLAF

in [9], the overall output signal results from the sum of the

outputs of the linear and nonlinear branches. However, the

nonlinear output is characterized by the adaptive combination

between the two adaptive filters downstream of the FEB.

Such architecture allows to improve the nonlinear model-

ing performance by exploiting the different properties of the

adaptive filters involved in the combination. This can be per-

formed by choosing different adaptation rules for wFL1,n and

wFL2,n, or the same algorithm but using different parameter

settings, e.g., different step sizes. However, the cPSFLAF is

also well-suited to exploit the sparse representations of func-

tional links, and this can be performed by distinguish param-

eters related to the proportionate algorithms, as we are going

to show in the following.

The linear path of the cPSFLAF is processed as in the

SFLAF, while the nonlinear path follows the same procedure

of the SFLAF until the generation of the expanded buffer gn.

This signal is then fed into both the adaptive filters, thus gen-

erating the individual outputs and errors, for i = 1, 2:

yFLi [n] = gT
nwFLi,n−1 (8)

eFLi [n] = d [n]− (yL [n] + yFLi [n]) , (9)

where error signals (9) have been obtained following a similar

procedure than in case of the combination of kernels scheme

[3]. These error signals are used to adapt the filters wFLi,n−1:

wFLi,n = wFLi,n−1 + µFLi
Qi,ngn

gT
nQi,ngn + δPFLi

eFLi [n] (10)

for i = 1, 2, where the diagonal elements of Qi,n are com-

puted similarly to (7), but considering that is possible to

choose different parameter values for the two filters. In

this way, different compromises regarding the adaptation

of the nonlinear filters can be alleviated by means of com-

bined schemes. In particular, related to the sparsity property,

we could distinguish ρi, for i = 1, 2, which consequently

yields qi,l [n] and δPFLi. By choosing different values for the

proportionality factor, it is possible to exploit any sparse rep-

resentation of the functional link, increasing the robustness of

the scheme with respect to the compromise imposed by the

selection of parameter ρ. In fact, if we choose a high sparsity

degree for the first filter, i.e., ρ1 close to 1, and a low one for

the second filter, i.e., ρ2 close to −1, it is possible to general-

ize the model regardless of how sparse is a representation of

functional links.
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Fig. 2. The combined PSFLAF architecture.

As it is possible to see in Fig. 2, the overall output of

the nonlinear branch is achieved by combining convexly the

individual filter outputs (8):

yN [n] = λ [n] yFL1 [n] + (1− λ [n]) yFL2 [n] (11)

where λ [n] is an adaptive mixing parameter that balances the

combination between the two filters wFLi [n] (i = 1, 2), giv-

ing more importance between the two filters, and even, un-

der certain circumstances, improving the behavior of both of

them [11]. Such awareness is obtained according to a mean

square error minimization. In particular, the adaptation of

λ [n] is performed by using an auxiliary adaptive parameter

a [n], which is related to λ [n] by means of a sigmoidal func-

tion that keeps the mixing parameter in the range [0, 1], and

defined according to [14, 15] as:

λ [n] = β

(

1

1 + e−a[n]
− α

)

, (12)

where α = 1/
(

1 + e4
)

and β = 1/ (1− 2α). The auxiliary

vector is updated by using a gradient descent rule, hence:

a [n] =a [n− 1] +
µc

βr [n− 1]
e [n] ∆y [n]

· (λ [n] + αβ) (β − αβ − λ [n])
(13)

where ∆y [n] = yFL1 [n] − yFL2 [n]. Also, in (13), µc

is the step-size parameter of the adaptive combination,

r [n] = γr [n− 1] + (1− γ)∆y2 [n] is the estimated power

of ∆y [n] that permits a normalized adaptation of a [n], and γ
is a smoothing factor. The overall error signal e [n], is derived

as:

e [n] = d [n]− (yL [n] + yN [n]) (14)

and it is used to update both the linear filter wL,n and the

auxiliary parameter a [n].
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4. EXPERIMENTAL RESULTS

We assess the effectiveness of the proposed FLAF-based ar-

chitecture in nonlinear system identification problems. For

all the experiments, the system to be identified has a Ham-

merstein structure, i.e., it involves a nonlinear block followed

by a linear one, as depicted in Fig. 3. The input signal x [n] is

distorted by a soft-clipping nonlinearity [10]:

y [n] =







2
3ζx [n] , 0 ≤ |x [n]| ≤ ζ

sign (x [n]) 3−(2−|x[n]|/ζ)2

3 , ζ ≤ |x [n]| ≤ 2ζ
sign (x [n]) , 2ζ ≤ |x [n]| ≤ 1

(15)

where 0 < ζ ≤ 0.5 is a nonlinearity threshold. The signal

y [n] is then fed into a linear system, formed by M = 10 in-

dependent random values between −1 and 1. An independent

and identically distributed (i.i.d.) noise signal v [n] is added at

output of the whole plant, in order to provide 20 dB of signal-

to-noise ratio (SNR). The input signal x [n] is generated by

means of a first-order autoregressive model, whose transfer

function is
√
1− θ2/

(

1− θz−1
)

, with θ = 0.8, fed with an

i.i.d. Gaussian random process. In order to produce a change

in the nonlinearity, we choose a clipping threshold ζ = 0.25
for the first half of the experiment, while we set ζ = 0.05 for

the second half. In this way, the first part of the experiment

is characterized by a mild nonlinearity, which becomes very

hard in the second half. Performance is evaluated in terms

of the excess mean-square error (EMSE), expressed in dB as

EMSE [n] = 10 log10

(

E
{

(e [n]− v [n])
2
})

, which is aver-

aged over 100 runs with respect to input and noise. Moreover,

in order to facilitate the visualization, curves are smoothed by

a moving-average filter. The base parameter setting for the

FLAF-based architecture is: µL [n] = 0.1, δL = δFL = 10−2,

P = 10, µc = 0.5 and γ = 0.9. Memoryless trigonometric

expansions are chosen for the FEB.

There are several strategies to improve the nonlinear mod-

eling for the cPSFLAF. For the first experiment set, we choose

one of the most promising strategies deriving from the classic

theory of adaptive combination of filters, which involves the

use of two filters only differing in the step-size values [11].

In particular, we set µFL1 = 0.05, µFL2 = 0.5, while a com-

mon intermediate value for the proportionality factor is cho-

sen: ρ1 = ρ2 = 0. The overall length of this experiment is

L = 80000 samples. Results in terms of the EMSE are de-

picted in Fig. 4(a), where it is possible to see that the com-

bined PSFLAF takes advantage of the convergence perfor-

mance of the PSFLAF with the higher step-size value (i.e.,
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Fig. 4. Evaluation of the nonlinear modeling by using the

cPSFLAF with different step-size values (a) and its mixing

parameter evolution (b).

µFL2), while the higher precision of the PSFLAF with µFL1

is exploited at steady state. This behavior occurs in both the

cases of mild and strong nonlinearity, as it is also shown by

the mixing parameter evolution in Fig. 4(b) that is close to 0
at transient state, i.e., it selects the PSFLAF with µFL2 accord-

ing to (11), while approaching 1 at steady state, i.e., when the

best performance is provided by the PSFLAF with µFL1.

Another combination strategy can be chosen for the com-

bination of proportionate filters, and it involves two filters

having different proportionality factors, in order to design a

system robust with respect to the degree of sparsity of the

nonlinear path [12]. In particular, we choose ρ1 = 0.9, ρ2 =
−0.9 in order to specialize the architecture regardless of any

sparsity degree. The step-size parameter of both the filters

on the nonlinear path is chosen as: µFL1 = µFL2 = 0.1. In

Fig. 5, it is possible to see the behavior of the cPSFLAF. Un-

like the previous case, in which a different choice of the step-

size parameter affects both the transient and the steady states,

the choice of different proportionality factors has implications

mainly on the convergence rate. This is the reason why we

choose a shorter length for this experiment, i.e., L = 40000.

In the first half of the experiment, when the nonlinearity is

mild (i.e., ζ = 0.25), there is a high degree of sparsity, since

the functional links involved are overdimensioned for the ex-

act modeling of the nonlinear system. In fact, as it is possible

to see in Fig. 5, the PSFLAF with ρ2 (that is the one with the

proportionality factor close to −1) achieves the worst conver-

gence performance, even slower than a linear NLMS. This is
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the reason why the cPSFLAF follows the behavior of the best

performing filter, which is the PSFLAF with ρ1. On the other

hand, in the second half of the experiment, the nonlinearity

level is very strong, therefore a high portion of gn is success-

fully used for the modeling, thus reducing any sparsity of the

functional link representation. In this case, the cPSFLAF fol-

lows the convergence behavior of the PSFLAF with ρ2 that

has the lower proportionality factor. It should be noted that

under computational restrictions, we could select ρ2 = −1,

giving rise to an NLMS adaptation instead of an IPNLMS

adaptive scheme. With this operation, a similar behavior is

expected but with reduced computational cost.

5. CONCLUSIONS

In this paper, a new nonlinear filtering architecture has been

proposed that takes advantage of any sparse functional link

representation. The proposed model is characterized by an

adaptive combination of two proportionate filters on the non-

linear path that yields an improvement of the overall modeling

performance. Future research will include the combination of

filters also on the linear path and the development of hierar-

chical schemes that would further generalize this model.
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