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Abstract—This paper studies the sparse recovery problem. Of
particular interest is the well known approximate message pass-
ing (AMP) algorithm. AMP enjoys low computational complexity
and good performance guarantees. However, the algorithm and
performance analysis heavily rely on the assumption that the
measurement matrix is a standard Gaussian random matrix.
The main contribution of this paper is an improved AMP (IAMP)
algorithm that works better for non-ideal measurement matrices.
The algorithm is equivalent to AMP for standard Gaussian ran-
dom matrices but provides better recovery when the correlations
between columns of the measurement matrix deviate from those
of the standard Gaussian random matrices. The derivation is
based on a modification of the message passing mechanism that
removes the conditional independence assumption. Examples are
provided to demonstrate the performance improvement of IAMP
where both a particularly designed matrix and a matrix from
real applications are used.

Index Terms—AMP, compressed sensing, message passing,
sparse signal processing, standard Gaussian random matrix.

I. INTRODUCTION

This paper studies the sparse recovery problem. Let

y = Ax + w, (1)

where y ∈ Rm is the observation vector, A ∈ Rm×n stands
for the measurement matrix, x ∈ Rn is the signal vector, and
w ∈ Rm denotes the additive white Gaussian noise. Assume
that x is sparse, that is, the number (k) of nonzero entries
in x is much smaller than n the dimension of x. Sparse
recovery problem concerns the reconstruction of the unknown
sparse signal x from the noisy observations y. It finds its
wide applications in compressed sensing, denoising, recovery
of missing data, and sparse linear regression [1]–[5].

There has been a huge literature in low complexity al-
gorithms to solve the sparse recovery problem. From the
information theoretical point of view, solving this problem
requires exhaustive search of which the complexity increases
exponentially with the problem dimension. One way to re-
duce the complexity is to cast the recovery problem as a
convex optimisation where the `1-norm replaces the sparsity
constraint. Theoretic performance guarantees in terms of phase
transition, restrict isometry property (RIP), etc. have been
proved [6], [7]. Another low-complexity alternative is the
greedy algorithms include OMP, SP, CoSaMP, etc. [6], [8],
[9] where the performance guarantees are often based on RIP.
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For both approaches, it has been proved that for noiseless case
exact recovery is possible even when the linear system in (1)
is severely under-determinined, i.e., m = O

(
k · log n

k

)
� n.

In this paper, of our particular interest is the approximate
message passing (AMP) algorithm. It has received wide at-
tention due to its two nice properties: low complexity and
good performance guarantees. It only involves matrix-vector
products and scalar operations and therefore the complexity
is O

(
n2
)
. At the same time, if the measurement matrix is

a standard Gaussian random matrix, it has been rigorously
proved that AMP achieves the same phase transition curve as
`1-minimisation does. Furthermore, AMP allows complicated
statistical models for both the unknown sparse signal and the
noise [10]–[14]. It has been proved in [11] that any signal
model can be applied as long as the corresponding denoiser is
Lipschitz continuous. This extends the applicability of AMP.

One drawback of AMP is that both the algorithm and the
performance analysis heavily rely on the standard Gaussian
random matrix. It has been numerically observed that the
performance of AMP may severely deteriorate if the mea-
surement matrix is significantly different from the standard
Gaussian random matrix. A particularly designed example
is given in Section IV to highlight this phenomenon. This
drawback limits the applicability of AMP. There have been
methods proposed to address this issue, including Damped
GAMP [15] which linearly combines the results from two
adjacent iterations, SwAMP [16] which updates components
in x sequentially, and ADMM-GAMP [17] which considers
the inference problem of generalized linear models (GLM) as
a large-system-limit approximation of the Bethe Free Energy
(LSL-BFE) minimization problem and using ADMM method
to solve it.

The major contribution of this paper is an improved AMP
(IAMP) algorithm that works better for non-ideal measurement
matrices. The derivation of AMP is based on a factor graph
representation of the system and Gaussian approximations of
the passed messages on the factor graph. We observe that
the conditional independence assumption used in the message
computation is not valid any more when the measurement
matrix is not ideal. It turns out that the correlation profile
of the columns of the measurement matrix needs to be
taken into consideration. Based on this observation, a new
message passing mechanism is derived where all messages
are computed at the variable nodes. This is quite different
form previous approaches in [15]–[17]. The developed IAMP
algorithm reduces to AMP when the measurement matrix is
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standard Gaussian; at the same time, substantial performance
improvements of IAMP are demonstrated for non-ideal mea-
surement matrices. It is noteworthy that IAMP involves extra
computations. However the extra computations can be made
offline so that the ‘operational’ complexity of IAMP is in the
same order as that of AMP.

II. APPROXIMATE MESSAGE PASSING (AMP)

AMP is an efficient and powerful technique to solve the
inverse problem (1). Let A be the standard Gaussian random
matrix containing i.i.d. Gaussian entries, and w be the additive
white Gaussian noise. AMP iteratively computes

xt+1 = η
(
ATrt + xt

)
, (2)

rt = y −Axt +
1

δ
rt−1

〈
η′
(
ATrt−1 + xt−1

)〉
, (3)

where by convention define r−1 = 0 and x0 = 0, η (·) is
a scalar function often referred to as denoiser, η (v) means
applying the η (·) to each component of the vector v, the
superscript T denotes the matrix transpose, δ = m

n is a
constant, 〈v〉 = 1

n

∑n
i=1 vi computes the average of the vector

v, and η′ (·) denotes the derivative of the function η (·). In [11],
it has been shown that if the prior distribution of x is assumed
to be Laplacian, i.e., p (x) ∝ exp (−β ‖x‖1), then η (·) takes
the form of the soft thresholding function and AMP achieves
the same phase transition curve as the famous LASSO problem

x̂ = arg min
x

1

2
‖y −Ax‖22 + λ ‖x‖1 (4)

for an appropriately chosen constant λ ∈ R+.
For the purpose of this paper, we briefly review the deriva-

tion of the AMP algorithm. AMP is based on the well known
belief propagation (BP) mechanism. Describe the probability
model of the system using the factor graph in Figure 1,
where a variable node i ∈ [n] denotes xi and a factor node
a ∈ [m] specifies the conditional probability p (ya|x). The
message from a factor node a to a variable node i, denoted
by ma→i (xi), is given by

ma→i (xi) = p (xi|ya) ∝
ˆ
p (ya|xi,x∼i) p (x∼i) dx∼i (5)

=

ˆ
p (ya|xi, za→i) p (za→i) dza→i, (6)

where x∼i denotes all the components in x except xi, and
za→i :=

∑
j 6=iAajxj . Note that generally speaking, p (za→i)

is complicated and it is computationally expensive to compute
the integral involved in ma→i (xi). However, when A is a
standard Gaussian random matrix, za→i is a Gaussian random
variable. The message ma→i (xi) can be easily obtained and
is also Gaussian. Now consider the message from a variable
node i to a factor node a. Let x̂a←i = arg max

xi

p (xi|y∼a),
where

p (xi|y∼a)
(a)
∝ p (xi)

∏
b 6=a

p (yb|xi) ∝ p (xi)
∏
b6=a

mb→i (Abixi) ,

(7)

where the relation (a) is based on the conditional indepen-
dence assumption. When each mb→i (Abixi) is in Gaussian

Figure 1: Factor Graph and Message Passing

form, the computation of p (xi|y∼a) is highly simplified.
In summary, the Gaussian approximation and conditional
independence assumption are the two key elements in the
derivation.

III. IMPROVED APPROXIMATE MESSAGE PASSING (IAMP)
A. Modification of Message Passing

The main difference between AMP and IAMP is the
message passing mechanism to handle general measurement
matrix A. When the matrix A is sufficiently dense, za→i
can be approximated by a Gaussian random variable so the
Gaussian assumption for AMP is still valid. However, when
the columns of A are highly correlated, the independence
assumption (among mb→i’s, b ∈∼ a) is not true any more
and neither is (7). To address this issue, a new message
passing mechanism has to be designed. In particular, due to the
dependence between mb→i’s, the computation of them at the
factor nodes becomes un-necessary. We focus on the message
at the variable node

my→i (xi) = p (xi|y) ∝
ˆ
p (y|xi,x∼i) p (x∼i) dx∼i,

(8)
where we stick to the common assumption that p (x∼i) =∏
j 6=i p (xj). With the assumption that the measurement noise

w ∼ N
(
0, σ2

wI
)
, the following Lemma suggests that p (xi|y)

can be approximated by a simple Gaussian pdf.

Lemma 1. Let Ai be the ith column of A and AT
i is the trans-

pose of Ai. Define ỹi := AT
i y , zi := AT

i

(∑
j 6=iAjxj

)
,

E [xj ] = 0, σ2
xj

:= E
[
x2i
]
, and

σ2
zi := var (zi) =

∑
j 6=i

(
AT
i Aj

)2
σ2
xj

(9)

Assume that ‖Ai‖2 = 1, ∀i ∈ [n], and Ax is jointly Gaussian.
Then p (xi|y) can be approximated by N

(
ỹi, σ

2
w + σ2

zi

)
.

Proof Sketch. We first calculate P(y|xi, x∼i) by treating
y and x∼i as constant vectors:

lnp (y|xi, x∼i) (10)

= − 1

2σ2
w

∑
a

ya −Aaixi −∑
j 6=i

Aajxj

2
+ c (11)

= − 1

2σ2
w

(
||Ai||2x2i − 2ỹixi + 2zixi

)
+ c+ c′ (12)

= − 1

2σ2
w

(ỹi − zi − xi)2 + c+ c′ + c′′, (13)
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where c is a constant only dependent on y, and c′ and c′′ are
two constants and their sum is given by

c′ + c′′ = − 1

2σ2
w

(
‖y‖22 +

∥∥A⊥Ti A∼ix∼i
∥∥2
2
− ỹ2i

+2ỹizi − 2 (A∼ix∼i)
T
y
)
, (14)

where A⊥i is the orthogonal complement of Ai. Now consider
the Gaussian vector z⊥i := A⊥Ti A∼ix∼i. It is straightforward
to verify that the correlation between zi and z⊥i is zero and
therefore zi and z⊥i are independent. As a result, the integral
in (8) becomesˆ

p (y|xi,x∼i) p (x∼i) dx∼i (15)

=

ˆ
p
(
y|xi, zi, z⊥i

)
p (zi) p

(
z⊥i
)
dzidz

⊥
i (16)

(a)
=

ˆ
c1 exp

(
− 1

2σ2
w

(ỹi − zi − xi)2 −
z2i

2σ2
zi

+ c2zi

)
dzi

(17)

= c3 exp

(
− 1

2
(
σ2
w + σ2

zi

) (ỹi − xi)2
)
, (18)

where Equation (a) is obtained by integrating z⊥i out, and c1,
c2 and c3 are three constants. This lemma is therefore proved.

B. Algorithm Description

At the variable nodes, the operation of IAMP is the same as
that of AMP: each signal component is denoised individually
from its noisy observation

ỹi = xi + w̃i, (19)

where w̃i is additive Gaussian noise with distribution
N
(
0, σ2

w̃i

)
. Based on Lemma 1, σ2

w̃i
= σ2

w + σ2
zi . To make

the notation more intuitive, we also denote σ2
w̃i

by σ2
in,i. Now

consider the popular denoiser of the form [11]

x̂i = η (ỹi; θi) =
(|ỹi| − θi)+
|ỹi|

ỹi, (20)

where (x)+ = max (x, 0), and θi is a threshold. De-
fine the mean squared error of this denoiser by σ2

out,i :=

E
[
|x̂i − xi|2

]
. It can be shown that for a given sparsity

probability ε > 0, the worst case prior distribution (max-
imising the σ2

out,i) of xi is given by p (xi) = ε
2δxi=+∞ +

ε
2δxi=−∞+(1− ε) δxi=0, where δ is the Dirac function. Under
this assumption, the optimal threshold θi (to minimise σ2

out,i)
and the corresponding mean squared error σ2

out,i are given by

θi = α∗σin,i, (21)

α∗ := arg min
α

M# (α, ε) (22)

M# (α, , ε) := ε
(
1 + α2

)
+ (1− ε) ·[

2
(
1 + α2

)
Φ (−α)− 2αφ (α)

]
, (23)

σ2
out,i = M

(
σ2
in,i, ε

)
:= M# (α∗, ε)σ2

in,i. (24)

See [11] for more details on the derivations and discussions
of this minimax approach.

Algorithm 1 IAMP
Input:
y: the observation vector.
A = [A1, A2, A3, ..., An]: the measurement matrix.
σ2
w: the noise variance.
ε: the nonzero probability (defined as the ratio between the
number of nonzero elements in x and n the dimension of x).
Output:
x̂: the estimated signal.
Initialization:
Let r0 = y, x0 = 0 and t = 0.
Set σ2

out,i = σ2
x =

(
‖y‖22 −mσ2

w

)
/ ‖A‖2F .

Iteration: In the t-th iteration, do
1) Compute

σ2
in,i =

∑
j 6=i

(
AT
i Aj

)2
σ2
out,j + σ2

w, ∀i ∈ [n] . (25)

2) Let ỹti = xti +
∑
aAair

t
a. Update the estimated signal

xt+1
i = η

(
ỹti ; θ

t
i

)
, ∀i ∈ [n] ,

where the denoiser η (·) and the threshold θti are defined
in (20) and (21) respectively.

3) Update the “residual” signal rt+1 by

rt+1
a = ya−

n∑
i=1

Aaix
t+1
i +

n∑
i=1

A2
aiη
′ (ỹti ; θti) rta, ∀a ∈ [m] .

(26)
4) Compute σ2

out,i via Equation (24).
5) [Optional] Adjust the “output” noise variance.

Let σ̄2
r = 1

m

∑n
i=1 ‖Ai‖22 σ2

out,i. Set σ2
out,i = cσ2

out,i,
where

c =

(
1

m

∥∥rt+1
∥∥2
2
− σ2

w

)
+

/σ̄2
r .

6) Go back to step 1 unless the stop criteria are satisfied.

With above notations, the IAMP algorithm is detailed in
Algorithm 1. In the initialisation step, an estimation of the
variance of σ2

x will be needed. From the model y = Ax+w, it
is approximately true that ‖Ax‖22 = ‖y‖22−mσ2

w. On the other
hand, assume that xi’s are independent and σ2

xi
= σ2

xj
= σ2

x,
∀i 6= j. Then ‖Ax‖22 ≈

∑
i σ

2
xi
‖Ai‖22 = σ2

x ‖A‖
2
F . As a

result, one can set σ2
x =

(
‖y‖22 −mσ2

w

)
/ ‖A‖2F .

The major differences between AMP and IAMP are as
follows. Assume that σ2

in,j = σ2
in,k and σ2

out,j = σ2
out,k,

j 6= k, and therefore σ2
in,i and σ2

out,i are replaced by
σ2
in and σ2

out respectively. In AMP, Equation (25) becomes
σ2
in = 1

δσ
2
out + σ2

w with δ := m
n . The implementation of

the denoising function η in (2) depends on this information.
The second difference is that the last term in (26) becomes
1
m

∑n
i=1 η

′ (ỹti ; θ
t
i) r

t
a = 1

δ 〈η
′ (ỹti ; θ

t
i)〉 rta.

The ‘operational’ complexity of IAMP is the same as
that of AMP. The most computationally intensive step is
the evaluation of (25), of which the complexity is O

(
n3
)
.

However, AT
i Aj , ∀i 6= j, can be computed off-line. All other

steps only involve at most O
(
n2
)

computations.
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Figure 2: Phase Transition for standard Gaussian matrices.

IV. PERFORMANCE DISCUSSIONS

In this section, we will first show that if the measurement
matrix A is a standard Gaussian random matrix, then IAMP
reduces to AMP. Next, we construct a Gaussian random
matrix such that the marginal distribution of each entry is
still N

(
0, 1

m

)
but the entries are dependent. For this scenario,

we show the significant performance improvement of IAMP.
Finally, we demonstrated the improvement of IAMP using
synthetic data of a real application — radar imaging.

A. The Standard Gaussian Random Matrix

In this subsection, we consider the behavior of IAMP for
standard Gaussian random matrices, i.e., the entries are inde-
pendently generated from N

(
0, 1

m

)
. Under this assumption

and using the approximation techniques mentioned in [11],
the IAMP algorithm can be simplified when the sizes of the
system m and n are sufficiently large. In particular, it can
be shown that AT

i Aj = 1
m + o

(
1
m

)
and hence Equation

(25) becomes σ2
in = 1

δσ
2
out + σ2

w + o (1). Furthermore, each
component of the matrix Aa,i = O

(
1√
m

)
. The last term

in (26) becomes 1
m

∑n
i=1 η

′ (ỹti ; θ
t
i) r

t
a = 1

δ 〈η
′ (ỹti ; θ

t
i)〉 rta.

Hence, IAMP reduces to AMP.
Figure 2 provides the numerical comparison between AMP

and IAMP. We consider the noise free case, i.e., σ2
w = 0.

We are interested in the phase transition curve, that is, the
exact reconstruction happens with dominant probability in the
region below the curve while the recovery is not accurate
with dominant probability in the region above the curve. (In
empirical study, we use 50% probability to draw the phase
transition curve.) The theoretic curve is obtained by asymptotic
analysis presented in [11]. The empirical results are obtained
via 100 independent trials. In the simulations, n = 1000 so that
asymptotic analysis should be accurate. The simulation results
suggest that the theoretical phase transition curve predicts the
actual performance and the AMP and IAMP algorithms give
the identical numerical performance.

B. Non-standard Gaussian matrices

The more interesting results are obtained when the measure-
ments are not the standard Gaussian matrix. Let B ∈ Rm×n
be a standard Gaussian random matrix. Let D ∈ Rm×m be a
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Figure 3: Phase Transition for non-standard Gaussian matrices.

diagonal matrix whose first m/2 diagonal entries are
√
ρ/2

and the rest m/2 diagonal entries are given by
√

(4− ρ) /2,
where ρ ∈ [0, 4] is a given design constant. Let H be a
normalised Hadamard matrix such that HTH = HHT = I .
Define the measurement matrix as A = HDB.

This definition is motivated by equation (9). It is clear that
A is a Gaussian random matrix. The marginal distribution of
an entry Aa,i is given by Aa,i ∼ N

(
0, 1

m

)
. Furthermore, it

can be shown that the cross-correlation between two columns
has variance given by

E
[(
AT
i Aj

)2]
= E

[(
BT
i D

THTHDBj

)2]
= E

[(
BT
i D

TDBj

)2]
= E

(∑
k

d2kBk,iBk,j

)2


=
1

m2

∑
k

d4k =
ρ2 + (4− ρ)

2

8m
=:

1

m
σ2
c (ρ) ,

which is not 1/m (the value for standard Gaussian random
matrix) unless ρ = 2.

The resulted IAMP behaves quite different from AMP.
Firstly, Equation (25) can be approximated by σ2

in =
1
δσ

2
c (ρ)σ2

out + σ2
w. Secondly, if we mimic the state evolu-

tion analysis in [11] for IAMP for the asymptotic case, the
theoretic phase transition is given by the implicit equation
M# (α∗, ε) = 1

δ /σ
2
c (ρ). Note that ρ2c (ρ) = 2 when ρ = 4,

and this means for a given ε, twice many measurements are
theoretically expected for exact reconstruction.

Figure 3 compares AMP and IAMP. IAMP gives much
better performance than AMP, and theoretic prediction of
IAMP is also better than that of AMP. Unfortunately, in this
case, neither of the theoretical predictions is accurate.

C. Radar Imaging

For simplicity, we consider the 1-D radar imaging. (The 2-
D image in Figure 4 is obtained by scan the picture line by
line. The size of the image is 207× 194) A linear frequency
modulated signal is transmitted and reflected by the existing
targets in the scene. The received signal is then the superpo-
sition of the reflected signals. When the number of existing
targets is small, this superposition is sparse. Depending on
the distances between the radar system and the targets, the
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reflected signals are scaled versions of the transmitted signal
with different delays. Mathematically, the received signal is
given by y = Ax, where columns of A ∈ Cm×n are the
transmitted signal with different delays, and x ∈ Cn denotes
the reflection coefficient vector and is sparse. The matrix
A has two interesting structures. First, it is deterministic
and Toeplitz. Second, it is tall rather than flat. Here we do
not consider the compressed sensing scenario, i.e., no sub-
sampling is performed. In practice, the sampling rate can be
very high resulting m > n.

The simulated results are given in Figure 4. Besides AMP
and IAMP, the least squares approach is also included. This
is motivated by the fact that least squares approach can
perfectly recover the signal x for the noise free case. However,
least squares approach cannot incorporate the sparse prior
information and therefore does not give a sparse solution for
the noisy case. Figure 4b demonstrates this point at SNR=0dB.
By contrast, due to accommodating sparse prior information,
both AMP and IAMP perform well consistently for both high
SNR and low SNR. As of the comparison between AMP and
IAMP, it can be observed that IAMP results in less artifacts
(see bottom left corner of Figure 4c) and sharper images.1

In summary, among the tested algorithms, IAMP is the most
robust one against the noise.

V. CONCLUSIONS

An improved AMP algorithm has been derived for non-
ideal measurement matrices. The performance improvement
has been demonstrated by using a particularly constructed
Gaussian matrix and a matrix from real applications. It turns
out that the improvement is obtained by considering the
correlation profile of the columns of the measurement matrix.
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