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ABSTRACT

In a standard compressive sampling (CS) setup, we develop

a universal algorithm where multiple CS reconstruction al-

gorithms participate and their outputs are fused to achieve a

better reconstruction performance. The new method is called

universal algorithm for CS (UACS) that is iterative in nature

and has a restricted isometry property (RIP) based theoretical

convergence guarantee. It is shown that if one participating

algorithm in the design has a converging recurrence inequal-

ity relation then the UACS also holds a converging recurrence

inequality relation over iterations. An example of the UACS

is presented and studied through simulations for demonstrat-

ing its flexibility and performance improvement.

Index Terms— Compressive sampling, greedy algo-

rithms, iterative fusion, restricted isometry property.

1. INTRODUCTION

Compressed sensing (CS) refers to an under-sampling prob-

lem, where the sampled (or measured) data is assumed to

be sparse in a domain. Typically CS considers an under-

determined setup where a high-dimensional signal vector has

to be reconstructed from a low-dimensional measurement

vector. The measurement noise is considered additive. De-

sign of CS reconstruction algorithms remains as a popular and

challenging research area with active involvement of signal

processing [1] and information theory [2] communities. In

the ‘design’ arena, development of reconstruction algorithms

with provable theoretical guarantees are more appreciated.

A relevant theoretical question is: what is the quality of

the reconstruction performance, and how is the performance

related to the system and signal properties?

Almost all CS reconstruction algorithms can be catego-

rized in three major types: convex optimization [3], Bayesian

[4] and greedy pursuits [5–7]. A popular theoretical analy-

sis tool is based on the restricted-isometry-property (RIP) of

the CS measurement matrix. The RIP based analysis is re-

cently carried out for convex optimization and greedy pursuits

[6, 8]. However, there exists numerous CS reconstruction al-

gorithms providing significantly better practical performance

than many theoretically justified algorithms, but without a

strong theoretical guarantee. Examples of such algorithms are

look-ahead schemes [9, 10] and back tracking schemes [11]

etc. In the absence of theoretical justifications, the example

algorithms are ad-hoc in nature. The design of ad-hoc al-

gorithms are solely motivated by engineering intuitions and

success in applications.

Recent results have categorically shown that the perfor-

mance of all CS reconstruction algorithms depends on many

parameters, such as the level of under-sampling, sparsity

level, measurement noise power, and the statistical distribu-

tion of non-zero elements of a sparse signal. There exists

no algorithm that can be considered the best in all ranges

of these parameters [9]. The design of algorithms with good

performance is of utmost importance as there exists no best al-

gorithm in a scenario with varying parameters. In this paper,

we develop a fusion strategy where several algorithms can

participate with provable theoretical guarantee. Surprisingly,

all but one participating algorithm can be ad-hoc. Our main

contribution is to show that if one algorithm has a converging

recurrence inequality relation among all the participating

algorithms then the developed universal algorithm for CS

(UACS) also has a converging recurrence inequality relation.

With the recurrence inequality relation, theoretical conver-

gence of the quality of reconstruction over iterations can be

analysed. The result implies that under certain conditions,

the reconstruction is guaranteed to be perfect. Finally simu-

lation results demonstrate better practical performance of an

example UACS algorithm than the participating algorithms.

The achievement of better practical performance supported

by RIP based theoretical guarantee brightens future prospect

of designing new ad-hoc, but powerful CS reconstruction

algorithms.

1.1. CS setup, notations and preliminaries

The standard CS problem can be stated as follows, we acquire

a T -sparse signal x ∈ R
N via the linear measurements

y = Ax+ e, (1)

where A ∈ R
M×N is a matrix representing the sampling

system, y ∈ R
M represents a vector of measurements and

e ∈ R
M is additive noise representing measurement errors. A

T -sparse signal vector consists of at most T non-zero scalar

components. For the setup T < M < N (under-determined
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Fig. 1: Block diagram of UACS - Universal Algorithm for

Compressive Sampling.

system of linear equations), the task is to reconstruct x from

y as x̂. Without a-priori statistical knowledge of x and e, the

objective in CS is to strive for a reduced number of measure-

ments (M ) as well as achieving a good reconstruction qual-

ity. Note that, in practice, we may wish to acquire a signal x

that is sparse in a known orthonormal basis and the concerned

problem can be recast as (1).

We use calligraphic letters T , U and V to denote sets that

are sub-sets of Ω , {1, 2, . . . , N}. We use |T | and T c to

denote the cardinality and complement of the set T , respec-

tively. For the matrix A ∈ R
M×N , a sub-matrix AT ∈

R
M×|T | consists of the columns of A indexed by i ∈ T .

Similarly, for x ∈ R
N , a sub-vector xT ∈ R

|T | is com-

posed of the components of x indexed by i ∈ T . Also we

denote (.)t and (.)† as transpose and pseudo-inverse, respec-

tively. In this paper A
†
T , (AT )

†. We use ‖.‖ to denote the

standard ℓ2 norm of a vector. Further ‖.‖1 and ‖.‖0 are used

to denote ℓ1 and ℓ0 norms, respectively. For a sparse sig-

nal x = [x1, x2, . . . , xi, . . . , xN ]t, the support-set T of x is

defined as T = {i : xi 6= 0}. We use l and k to denote itera-

tion counters for UACS and a participating algorithm, respec-

tively. Then supp(x, κ) , {the set of indices corresponding

to the κ largest amplitude components of x}.

Definition 1 (RIP: Restricted Isometry Property [12]) –

A matrix A ∈ R
M×N satisfies the RIP with Restricted Isom-

etry Constant (RIC) δT if

(1− δT )‖x‖
2 ≤ ‖Ax‖2 ≤ (1 + δT )‖x‖

2 (2)

holds for all vectors x ∈ R
N such that ‖x‖0 ≤ T , and 0 ≤

δT < 1.

Algorithm 1 Pseudo-code of UACS - Universal Algorithm

for Compressive Sampling

Input: y, A, T
Initialization:

1: l← 0 (l denotes iteration counter)

2: rl ← y (Residual at l’th iteration)

3: T̂l ← ∅ (Support-set at l’th iteration)

4: x̂l ← 0 (Sparse solution at l’th iteration)

Iteration:

repeat

l← l + 1 (Iteration counter)

Several CS reconstruction algorithms (P algorithms):

1: T̂1,l ← Algo1(y,A, T, T̂l−1)

2: T̂2,l ← Algo2(y,A, T, T̂l−1)

3:
...

4: T̂P,l ← AlgoP (y,A, T, T̂l−1)

Fusion:

1: Ũl ← T̂1,l ∪ T̂2,l ∪ . . . ∪ T̂P,l

2: x̃l such that x̃Ũl
← A

†

Ũl

y ; x̃Ũc
l
← 0

3: T̂l ← supp(x̃l, T )

4: x̂l such that x̂T̂l
← A

†

T̂l

y ; x̂T̂ c
l

← 0

5: rl ← y −AT̂l
x̂T̂l

= y −Ax̂l

until stopping criterion

Output: x̂← x̂l, T̂ ← T̂l, r← rl

2. UACS STRATEGY

Here we propose a UACS strategy, which is an iterative al-

gorithm. A block diagram of the UACS is shown in Fig. 1,

consisting of two main parts: (1) several (P ) CS reconstruc-

tion algorithms and (2) fusion. Each participating algorithm

can use knowledge of the support-set to improve its own es-

timation over iterations. The fusion is a least-squares based

method that helps to estimate the support-set of x. The

pseudo-code of the UACS is described in Algorithm 1.

Assumption 1 The sparsity level of x denoted by T is known

a-priori and used as an input to UACS. Also, outputs of all

participating algorithms are T -sparse.

In Algorithm 1, l denotes the iteration counter and T̂p,l de-

notes the estimated support-set of the p’th participating al-

gorithm. Note that the participating algorithms have an in-

put that is the previous support-set estimate T̂l−1, and then

the fusion strategy helps to give a better estimate, T̂l. The

expectation is that the a-priori knowledge of T̂l−1 will im-

prove the estimate T̂p,l. The fusion strategy is comprised of a

union of estimated support-sets, and a least-squares based es-

timation and detection of support-set corresponding to the T
largest amplitudes. A stopping criterion either based on non-

decreasing residual norm or a fixed number of iterations can

be employed. Now we state the main result as follows.
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Main result: Without loss of generality, let the first al-

gorithm among P participating algorithms in UACS satisfy a

recurrence inequality that converges. Due to the converging

recurrence inequality, we get a relation on the reconstruction

performance quality for the first algorithm (Algo1) over iter-

ations, as follows

‖xT̂ c
1,l
‖ ≤ p1‖xT̂ c

l−1
‖+ p2‖e‖, (3)

where p1 <
1−δ(P+1)T

1+δ(P+1)T
< 1 and p2 are known constants, and l

denotes the iteration count. If K1 = p1
1+δ(P+1)T

1−δ(P+1)T
< 1 andK2

are known constants, then the UACS satisfies the following

recurrence inequality

‖xT̂ c
l

‖ ≤ K1‖xT̂ c
l−1
‖+K2‖e‖ (4)

that converges over iterations. Using the converging recur-

rence inequality, after ⌈log
(

‖e‖
‖x‖

)

/ log(K1)⌉ iterations (with

the constraint
‖e‖
‖x‖ < 1), the performance of the UACS is

bounded by

‖x− x̂‖ ≤
1

1− δ3T

(

2 +
K2

1−K1

)

‖e‖. (5)

It can be seen that if there is no measurement noise then we

get perfect reconstruction.

The proof of the main result is not shown here for brevity

and will be detailed in a later extended manuscript.

3. EXTENDED SUBSPACE PURSUIT

In this section, we propose a general extension of the sub-

space pursuit (SP) algorithm of [6], referred to as the extended

subspace pursuit algorithm (ESP). It can be shown that the

ESP has a recurrence inequality that converges and hence can

act as the first participating algorithm in UACS (that means

ESP is Algo1 in UACS). The pseudo-code of the ESP algo-

rithm is shown in Algorithm 2. In the ESP, there are two

extensions in iterations as follows. In the first step of iter-

ations, we create a support-set of cardinality KT satisfying

(K + 1)T ≤ M , and in the fifth step, we use the side infor-

mation Tsi by union. Note that K = 1 is SP [6] and K = 2
is CoSaMP [7]. The side information Tsi provides a-priori

knowledge of the support-set estimated by the UACS fusion.

The recurrence inequality of the ESP is given as follows.

Proposition 1 (Recurrence inequality of ESP)

‖xT̂ c
k

‖ ≤aesp‖xT̂ c
k−1
‖+ besp‖xT c

si
‖+ cesp‖e‖,

where k denotes the (inner) iteration counter of ESP, and

aesp =
δ(K+2)T (1+δ(K+2)T )2

(1−δ(K+2)T )4 , besp =
1+δ(K+2)T

2(1−δ(K+2)T ) , and

cesp =
4(1+δ2(K+2)T )

(1−δ(K+2)T )3 .

Algorithm 2 ESP - Extended Subspace Pursuit

Input: y, A, T, Tsi, K
Initialization:

1: k ← 0 (k denotes iteration counter)

2: rk ← y (Residual at k’th iteration)

3: T̂k ← ∅ (Support-set at k’th iteration)

4: x̂k ← 0 (Sparse solution at k’th iteration)

Iteration:

repeat

k ← k + 1 (Iteration counter)

1: T̀k ← supp(A∗rk−1,KT )
2: Ṽk ← T̀k ∪ T̂k−1

3: x̃k such that x̃Ṽk
← A

†

Ṽk

y ; x̃Ṽc
k
← 0

4: T́k ← supp(x̃k, T )
5: V̌k ← T́k ∪ Tsi
6: x̌k such that x̌V̌k

← A
†

V̌k
y ; x̌V̌c

k
← 0

7: T̂k ← supp(x̌k, T )

8: x̂k such that x̂T̂k
← A

†

T̂k

y ; x̂T̂ c
k
← 0

9: rk ← y −Ax̂k

until stopping criterion

Output: x̂ESP ← x̂k, T̂ESP ← T̂k, r← rk

The proof is not shown here for brevity and will be detailed

in a later extended manuscript.

Now, we can analyze the quality of the ESP reconstruction

performance by the following theorem.

Theorem 1 If aesp<1, then after l∗=⌈log
(

‖e‖
‖x‖

)

/ log(aesp)⌉

iterations (with the constraint
‖e‖
‖x‖ < 1), the performance of

the ESP algorithm converges and is bounded by

‖xT̂ c
esp
‖ ≤

besp
1− aesp

‖xT c
si
‖+

1− aesp + cesp
1− aesp

‖e‖, (6)

Proof For sake of clarity, we drop the subscript ‘esp’. From

proposition 1, we can write,

‖xT̂ c
k

‖ ≤ a‖xT̂ c
k−1
‖+ b‖xT c

si
‖+ c‖e‖

≤ a
(

a‖xT̂ c
l−2
‖+b‖xT c

si
‖+c‖e‖

)

+b‖xT c
si
‖+c‖e‖.

At the end of l∗ iterations, we get

‖xT̂ c‖ ≤ al
∗

‖xT̂ c
l−l∗
‖+b

∑l∗−1
i=0 ai‖xT c

si
‖+c

∑l∗−1
i=0 ai‖e‖

(a)

≤ al
∗

‖x‖+ b
1−a‖xT c

si
‖+ c

1−a‖e‖
(b)
= a⌈log

(

‖e‖
‖x‖

)

/ log(a)⌉‖x‖+ b
1−a‖xT c

si
‖+ c

1−a‖e‖

= b
1−a‖xT c

si
‖+ 1−a+c

1−a ‖e‖.

In (a), we have used that a ≤ 1 and ‖xT̂ c
l−l∗
‖ ≤ ‖x‖. In (b)

we substituted the value of l∗ from the assumption.

Compare (3) and (6) and note the necessity of theorem 1 for

the main result of UACS.
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4. SIMULATION RESULTS

In this section, we illustrate the performance of an example

UACS algorithm where two CS algorithms participate: (1)

ESP and (2) a modified orthogonal matching pursuit (OMP).

The choice of OMP is due to its popularity and low complex-

ity. The modified OMP is called extended OMP (EOMP) and

is shown in Algorithm 3. Note that the EOMP can use the

side information Tsi for improvement in the estimation sim-

ilar as the ESP. However we do not need theoretical justifi-

cation of the EOMP for its use in UACS. At this point, we

mention that any other off-the-shelf or new CS reconstruction

algorithm (may be ad-hoc) could be used instead of EOMP

as the second participating algorithm with appropriate modi-

fications. The use of other CS algorithms, such as basis pur-

suit [3], are already verified and will be reported in an ex-

tended manuscript later.

We begin by describing the performance measure that we

use to compare various algorithms and our simulation setup

to evaluate them, as like [9]. In order to evaluate the aver-

age reconstruction accuracy of an algorithm, we use the fol-

lowing performance measure called signal-to-reconstruction-

noise-ratio (SRNR), as

SRNR =
E{‖x‖22}

E{‖x− x̂‖22}
.

A higher SRNR means a better reconstruction in the mean

square error sense.

We compute the SRNR for our example UACS algorithm

and compare with standard SP and OMP as the reference al-

gorithms. Noisy measurements are considered under various

conditions described later. Let the ratio of the size of the sam-

pling matrix, defined as fraction of measurements (α) be

α =
M

N
.

This ratio measures the level of under-sampling. Our simula-

tion setup is given below:

1. Given T and N , choose α and M such that M is an inte-

ger.

2. Construct a sensing matrix A of dimensions M ×N with

elements generated as independent Gaussian random vari-

ables distributed as N (0, 1). Scale each column of A to

unit norm.

3. Generate 100 realizations of the random sparse vector x

of dimension N, such that ‖x‖0 = T with the non-zero

indices picked uniformly over the set {1, 2, . . . , N}. The

non-zero components in x are generated from either a

Gaussian source, i.e, N (0, 1) (referred to as Gaussian

sparse vector), or set to ones (referred to as binary sparse

vector)

4. For each realization, compute the noisy measurement as

(1), where e ∼ N
(

0, σ2
nIM

)

is the measurement noise.

Algorithm 3 EOMP - Extended Orthogonal Matching Pursuit

Input: y, A, T, Tsi
Initialization:

1: k ← 0 (k denotes iteration counter)

2: rk ← y (Residual at k’th iteration)

3: T̂k ← ∅ (Support-set at k’th iteration)

4: x̂k ← 0 (Sparse solution at k’th iteration)

Iteration:

repeat

k ← k + 1 (Iteration counter)

1: T̀k ← supp(A∗rk−1,min(k, T ))
2: Ṽk ← T̀k ∪ T̂k−1 ∪ Tsi
3: x̃k such that x̃Ṽk

← A
†

Ṽk

y ; x̃Ṽc
k
← 0

4: T̂k ← supp(x̃k,min(k, T ))

5: x̂k such that x̂T̂k
← A

†

T̂k

y ; x̂T̂ c
k
← 0

6: rk ← y −Ax̂k

until stopping criterion

Output: x̂← x̂k, T̂ ← T̂k, r← rk

5. Execute the UACS, OMP and SP algorithms.

6. Repeat steps 2-4 for 100 times. The performance mea-

sure (SRNR) is evaluated by averaging over 100× 100 =
10000 realizations.

Next we define the signal-to-measurement-noise ratio (SMNR)

as

SMNR =
E{‖x‖22}

E{‖e‖22}
.

Note that, E{‖e‖22} = σ2
eM . We report the performance of

the algorithms for the case with and without measurement

noise, where we set SMNR to 20 dB in the former.

We run the simulation setup with N = 500 and T = 20.

α is varied in steps from 0.1 to 0.22. We evaluate the SRNR

as a function of the SMNR and α for the different algorithms

for different data vectors. The SRNR performance is plotted

in Fig. 2. It can be seen that the UACS algorithm provides

performance improvement in the region of interest for both

Gaussian and binary cases as compared to the reference OMP

and SP algorithms. The improvement is more pronounced in

the clean measurement scenario.

5. CONCLUSION

We developed a universal reconstruction algorithm for com-

pressive sampling where virtually any CS reconstruction

algorithm can participate subjected to appropriate modifica-

tions. We proved that under certain conditions, the universal

algorithm converges. A case study of one example universal

strategy is carried out by simulations and shown to provide

better performance than reference algorithms.
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Fig. 2: SRNR performance of the example UACS where two CS reconstruction algorithms participate. The participating algo-

rithms are ESP and EOMP. Performance results are shown for Gaussian and Binary sparse sources.
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