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ABSTRACT

In this paper, we propose a nonstationary model for transient

electrical current signals based on the physical behavior of

electrical appliances during their turn-on. This model takes

into account the nonstationarity of those transient signals and

the special form of their envelope. We also propose an al-

gorithm for the estimation of this model’s parameters and we

evaluate its performance on synthetic and real signals. The

measured transient current signals actually reflect the physical

phenomena appearing in the electrical appliances when turn-

ing on, and therefore, the model estimates of these transient

current signals are useful for characterizing electrical appli-

ances and can be helpful for distinguishing appliances in ad-

dition to the use of their steady-state power consumption.

Index Terms— Electrical current modeling, Turn-on

transient, Nonstationary signals, Parameter estimation, NILM

1. INTRODUCTION

The work on Non-Intrusive Load Monitoring (NILM) sys-

tems have started in the late 80’s with the work of Hart [1, 2]

and is still gaining a rapidly growing interest [3, 4]. The idea

of such systems is to monitor an electrical circuit, or load,

(e.g. residential or commercial buildings) having a number of

different appliances so that the system can estimate the num-

ber and nature of individual appliances (or group of appli-

ances) and their respective energy consumption by analyzing

the total load profile (current and voltage waveforms) mea-

sured at the main breaker level, hence, the non intrusive char-

acter of NILM systems.

In this paper, we present a study that was done in the con-

text of NILM, where we analyze transient electrical signals in

order to find parameters that can be used as characteristic ones

to recognize and distinguish appliances from different classes

or even recognize appliances of the same class. The transient

behavior of electrical appliances is strongly influenced by the

physical task that the appliance performs [5]. Recent studies

show that turn-on transients improve appliance recognition
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Fig. 1: Illustration for inrush current waveform.

accuracy [6]. The turn-on transient current of electrical appli-

ances is usually called inrush current [7] and is characterized

by a current waveform that has high values at the beginning

of power consumption and decreasing values as time goes on

(see Figure 1). This inrush current can appear for many rea-

sons depending on the type of the considered appliance. For

filament lamps, for example, it appears because of the fila-

ment resistance change related to its temperature change. Just

as the current begins to flow, the temperature of the filament

is low and so is its resistance which gives high current values.

As the current continues to flow, the temperature of the fil-

ament and its resistance begin to grow high which decreases

the current values. Other causes for this inrush current may be

the charging of input capacitance in power converters or the

energizing current of electric motors and transformers. In this

paper, we call transient current signals, signals with a turn-on

transient (we call hereafter transient-state part) plus a small

portion of the steady-state part (called hereafter steady-state

part). Along with the special form of the inrush current wave-

form, real signals can show a nonstationarity that comes from

the time variations of signal parameters: frequency, phase,

amplitude, etc. That’s why we need to consider instanta-

neous parameters that take into account these variations in

our model.

2. SIGNAL MODEL AND PARAMETER

ESTIMATION ALGORITHM

2.1. Signal model

Here we introduce the signal model proposed to repre-

sent transient current signals. We consider a noisy signal

x(t) = s(t) + w(t) where s(t) is a noise-free signal and
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w(t) is a white Gaussian noise. This noise model is in agree-

ment with the noise we found in our measurements (see

section 3.2 for more details on measurements and transient

signals’ database). To represent inrush current s(t) we pro-

pose a model based on models using exponentially damped

sinusoids [8]. The idea is based on the form of the inrush

current waveform (see Figures 1) and expresses s(t) as a

modulation of a sum-of-sinusoids signal S(t) by an envelope

E(t). For S(t), we assume that its frequencies are fixed and

are all odd order harmonics of the fundamental frequency f1
(50 Hz in our case) because of the odd half-wave symmetry

we usually find in electrical signals (i.e. for a periodic sig-

nal g(t) with period T , we have g(t) = −g(t ± T/2)). If

the frequencies are not fixed, but instead estimated, a slight

estimation error will lead to an amplitude modulation mod-

ifying the signal’s shape. Hence, for a better modeling, we

exploit the information about the signal and its fundamental

frequency and choose fi = (1+2(i−1))f1, i = 1, . . . , d (d:

total number of frequencies). The envelope E(t) models the

inrush current amplitude variation in the transient-state part

of the signal whereas S(t) models the other related variations

of the signal as a function of time, so that

s(t) = E(t)S(t), (1)

with

E(t) = A0e
pTt + 1, (2)

where A0 is a parameter adjusting initial amplitude and p =
[p1, . . . , pn]

T
is a vector of n polynomial coefficients such

that pTt is a nth order polynomial, with t = [t, . . . , tn]
T

representing time vector. The ”1” added to the envelope ex-

pression ensures that s(t) −→
t→+∞

S(t) to obtain the steady-

state part. To ensure that the envelope model E(t) converges,

the condition we need to verify is lim
t→+∞

[E(t) − 1] = 0 ⇒

lim
t→+∞

pTt = −∞ ⇒ pn < 0 (i.e. the last polynomial coef-

ficient must be negative valued). The sum-of-sinusoids com-

ponent S(t) is expressed as:

S(t) = ℜ

{

d
∑

i=1

Ai(t)e
jϕi(t)ej2πfit

}

, (3)

where Ai(t), and ϕi(t) (i = 1, . . . , d) are slowly time-varying

instantaneous amplitudes and phases of d complex exponen-

tials and ℜ stands for the real-part operator. The nonstation-

arity of signal parameters can be seen in Figure 2 where we

have two examples of real signals taken from two different

vacuum cleaners, one working at its maximum power con-

sumption level (Figure 2a) and the other one working at its

minimum power consumption level (Figure 2b). In this figure

we took the steady-state part of the transient current signals

and divided it into small windows of duration 20 ms each and

then overlaid them. When the signal is stationary (Figure 2a)

we get one repetitive elementary signal. In contrast, when

0 0.005 0.01 0.015 0.02
−8

−6

−4

−2

0

2

4

6

8

Time (s)

C
u
rr
en

t
a
m
p
li
tu
d
e
(A

)

(a) Stationary real signal
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(b) Nonstationary real signal

Fig. 2: Illustration of nonstationarity in real signals.

the signal is nonstationary we get a group of elementary sig-

nals with varying parameters (the most apparent variation in

Figure 2b is the phase parameter variation inducing a phase

shift).

2.2. Parameter estimation algorithm

In this section, we present the proposed algorithm for the esti-

mation of the parameters of the model defined in the previous

section. The algorithm can be divided into four main parts.

First a preprocessing step, then, the estimation of the sum-of-

sinusoids signal S(t) followed by the estimation of E(t) and

finally s(t) reconstruction. These parts are given in the steps

below and explained later in the sequel. Note that estimated

values are represented with a hat over the letter representing

the considered variable.

1. Preprocessing:

(a) Signal centering and filtering.

(b) Null-current zones removal.

2. S(t) estimation:

(a) Choose d and fix fi, (i = 1, . . . , d).

(b) Envelope E(t) detection: detected envelope is noted

Ed(t).

(c) Normalize s(t) using Ed(t) to get snorm(t): this is to

remove the envelope effect and keep only S(t) part.

(d) Estimate Ai(t) and ϕi(t), (i = 1, . . . , d) from

snorm(t) and construct Ŝ(t) using (3).

3. E(t) estimation:

(a) Choose n and compute ln(Ed(t)−1) = ln(A0)+pTt.

(b) Estimate parameters A0 and p on transient-state part

and construct Ê(t) using (2).

4. s(t) reconstruction: ŝ(t) = Ê(t)Ŝ(t).

The goal of the preprocessing step is mainly to remove any

undesirable artifact found on the real signals. The filtering,

for example, helps removing the undesirable impulsive switch

noise [9] which is particularly apparent at high sampling fre-

quencies. When an appliance doesn’t consume power, we get

a null-current zone in real signals which we want to remove

during the preprocessing step. In the second step (S(t) es-
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timation), we first choose the number of complex exponen-

tials d (based on signal’s frequency content and taking into

account the filtering step), and then we fix the frequency val-

ues fi = (1 + 2(i − 1))f1, i = 1, . . . , d. Envelope E(t)
detection (step 2(b), where detected envelope is noted Ed(t))
is done by first detecting the maxima (one maximum each

fundamental period) of the transient current signal and then

interpolating between them. It is worth noting that using a

conventional approach such as finding the envelope using the

analytic signal won’t work because of the non suitable model

in this case. In step 2(c), we normalize s(t) using Ed(t) to re-

move the envelope contribution, then, in step 2(d) we estimate

Ai(t) and ϕi(t) using least squares (LS) technique. More pre-

cisely, these parameters being slowly time-varying, they can

be considered as approximately constant over small time peri-

ods, typically, small data windows of duration [20 - 100] ms.

Hence, for each data window, we use LS for the estimation of

these amplitude and phase parameters. In the third step (E(t)
estimation), we first have to choose n, the polynomial order.

This is both a difficult and a critical choice to do and can

significantly affect the performance of the algorithm which

is highly dependent on the type of real signals we want to

model. In this study, our choice of this parameter was based

on empirical tests and we found that n = 3 gave satisfactory

estimation results for the real signals of our database. After

this, in step 3(b), we estimate A0 and p using a linear regres-

sion on the transient-state part and then we compute Ê(t) to

finally reconstruct ŝ(t) as ŝ(t) = Ê(t)Ŝ(t).

3. RESULTS

In this section we evaluate the performance of the modeling

and the parameter estimation algorithm on synthetic signals

first and then on real signals using a transient electrical signals

database we built.

3.1. Evaluation using synthetic signals

We construct a synthetic signal (of eight seconds duration)

based on signal model (1) to which we add white Gaussian

noise at different Signal-to-Noise Ratio (SNR) levels. We

choose d = 5 frequencies, corresponding to the frequency

vector f = [50, 150, 250, 350, 450]. To construct E(t) we

choose A0 = 1 and p = [−1, 0.5,−1]T , so that we will

have 3 polynomial coefficients to estimate. For S(t) we had

to simulate the nonstationarity, so we chose the amplitude

vector A = [1, 0.8, 0.4, 0.3, 0.1] and the phase vector ϕ =
[0, 0, 0, 0, 0], and we added some small random variations ∆A
and ∆ϕ to them per periods of 1 s. The generated synthetic

signal using these parameters is plotted in Figure 3. The

model parameters were chosen so that the synthetic signal re-

sembles as much as possible the measured real signals.

To evaluate the parameter estimation performance of our

algorithm, we computed the Root-Mean-Square Errors (RM-
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Fig. 3: Created synthetic signal without noise.

SEs) vs. different SNR values (0 to 50 dB) using 1000 Monte-

Carlo iterations for each SNR level. The RMSEs were com-

puted for the estimated signal ŝ(t) and parameter estimates

Â0, p̂, Â(t), and ϕ̂. Figure 4 shows the plots of these RM-

SEs. From these figures we clearly see that the errors decrease

when the SNR value increases which is to be expected. Based

on these simulations, we can say that for SNR ≥ 25 dB the

RMSEs have relatively low values and the estimation perfor-

mance of the algorithm can be qualified as good.

3.2. Evaluation using our transient signals’ database

To be able to study the considered transient signals, we are

building a database of transient electrical signals taking mea-

surements at a sampling rate of 100 kHz for different appli-

ances. We are at the beginning of this database construction

and to date we were able to make measurements for two types

of appliances: vacuum cleaners and drills. We have 10 differ-

ent vacuum cleaners (vacuum cleaner n◦1 to vacuum cleaner

n◦10) and 8 different drills (drill n◦1 to drill n◦8). Most of

these appliances have a variator that permits them to change

their working power level. For such appliances we chose

four levels for measurements: minimum (Min) and maximum

(Max) power levels, and two intermediate levels (IL1, IL2).

For each specific appliance type and level we made 50 mea-

surements each of which we call instance. We have 1550 in-

stances of vacuum cleaner signals and 1150 instances of drill

signals which total 2700 instances in the database. These in-

stances are 8.5 s long, beginning with a null-current zone (be-

fore consumption zone) and ending with a null-current zone

(end of consumption zone) and between the two, a zone we

call consumption zone. This latter is about 7 s long for vac-

uum cleaners and about 5 s long for drills. It is worth mention-

ing that not only transient current signals were measured but

also corresponding transient voltage signals so that the com-

putation of power consumption is possible. Figure 5 gives

examples of four instances from the database, two instances

from vacuum cleaner signals at ”Min” and ”Max” levels and

two instances from drill signals also at ”Min” and ”Max” lev-

els. Notice on the zoomed parts of the figure how signal shape

changes from ”Min” to ”Max” levels and from appliance type

to another. These changes are reflected in signal model (1)
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Fig. 4: RMSEs computed for signal and parameters’ estima-

tion vs. SNR.

through the variations of its parameters.

To estimate the parameters of database signals using our

proposed algorithm, we chose d = 5 frequencies and a poly-

nomial order n = 3. For the preprocessing we chose a low-

pass filter of cut-off frequency equal to 1kHz and we used a

power-based detector to remove null-current zones. To eval-

uate the parameter estimation algorithm performance on our

database we applied it on 50 pairs (appliance type, appliance

level) (e.g. pair (vacuum cleaner n◦5, level ”IL2”)) each con-

taining 50 instances of signals. The pairs numbered from 1

to 31 are vacuum cleaners and those numbered from 32 to 50

are drills. The obtained results are summarized in Figure 6

where we plot error bars (mean values with corresponding

standard deviations) for the estimated parameters Â0, p̂1, p̂2,

and p̂3 (Âi(t) and ϕ̂i(t) are not presented here due to space

limitation) of all 50 pairs. These error bars show that param-

eter estimates of vacuum cleaners are less variant than those

of drills. Also, p̂3 seems to be the least variant parameter

which suggests its possible use as a characteristic parameter

to represent an appliance class that includes vacuum clean-

ers and drills together (we can imagine for example a motor-

driven appliances class). On the other hand, the range of Â0
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(b) Current of vacuum cleaner

n◦ 6, ”Max” level

0 1 2 3 4 5
−10

−5

0

5

10

Time (s)

C
u
rr

en
t
a
m

p
li
tu

d
e

(A
)

(c) Current of drill n◦ 3, ”Min”

level
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(d) Current of drill n◦ 3, ”Max”

level

Fig. 5: Examples of transient current signals from database.

mean values of vacuum cleaners is different from the range of

drill Â0 mean values which suggests that the use of Â0 as a

characteristic parameter would better distinguish the vacuum

cleaner class from the drill class. Figure 7 shows the com-

puted steady-state active power (in Watts) for the appliances

of the database (vacuum cleaners numbered from 1 to 10 and

drills numbered from 11 to 18), with four power consumption

levels represented for appliances that have a variator and one

level for those who do not have one. We can see that the ac-

tive power range of vacuum cleaners is higher than the active

power range of drills. This difference in active power range is

apparently reflected on the range of values of Â0 (Figure 6a).

Note that drill n◦7 (pairs n◦46 to 49) is a drill press and is dif-

ferent than the other drills which are either hammer or rotary

hammer drills. Also it has a nominal power consumption of

100 W whereas most of the other drills have nominal power

consumption of 500 W. This explains the oddly different re-

sults with high estimate variance we see on Figures 6 for this

specific drill. Drill n◦1 (pairs n◦32 to 35) also seems to give

odd results which turn out to be due to the bad quality of this

one (defective drill that gives very noisy signals).

Finally, we estimated the SNR for the real signals of our

database, first, without filtering them (preprocessing step) and

then using the filtering. The SNR is estimated as follows:

first, we estimate the noise power σ̂2 as the averaged value of

the (L − ns) least eigenvalues of the covariance matrix R of

s(t) = [s(t), s(t − 1), . . . , s(t − L)]T where L is a window

parameter satisfying L ≫ ns. The SNR is, then, evaluated

as
(λ1 + . . .+ λns

)− nsσ̂
2

σ̂2
where λ1, . . . , λns

are the prin-
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vacuum cleaner drill

”Min” ”Max” ”Min” ”Max”

No filtering 26 33 23 25

Filtering 31 39 31 34

Table 1: Estimated mean SNR values (dB) for database sig-

nals at power consumption levels ”Min” and ”Max”
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Fig. 6: Error bars for Â0, p̂1, p̂2, and p̂3. Vacuum cleaners are

represented in blue and drills in red.

cipal eigenvalues of R. Table 1 gives mean values for the

estimated SNR for vacuum cleaners and drills taken at their

power consumption levels ”Min” and ”Max”.

We can, clearly, see the improvement of the SNR after us-

ing the filtering. Also, we see that most of these mean SNR

values are greater than 25 dB which means that we are well

within the SNR range where our estimation algorithm gives

good results.

4. CONCLUSION

In this paper we proposed a nonstationary model for transient

electrical current signals’ representation along with an algo-

rithm for its parameter estimation. We evaluated the estima-

tion performance of this algorithm, using synthetic and real

signals, and we showed that it gives good results within the

proper range of SNR values (≥ 25 dB). We also introduced

our database of transient electrical signals and gave a brief

description of it.

In future work, we intend to complete the database with

more transient measurements from other types of appliances

and use them to confirm the effectiveness of our model

along with its corresponding parameter estimation algorithm.
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Fig. 7: Computed steady-state active power for database ap-

pliances. Vacuum cleaners in blue and drills in red.

A more detailed description of the database and related in-

strumentation may be considered in a future publication.
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