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ABSTRACT
In this paper, we consider an opportunistic beamforming
scheduling scheme of secondary users (SUs) which can share
the spectrum with a primary user (PU) in an underlay cogni-
tive radio network. In the scheduling process, the cognitive
base station (CBS) having multi-antennas, generates orthogo-
nal beams which insure the minimum interference to the PU.
Then, each SU feeds back its maximum signal to interfer-
ence and noise ratio (SINR) and the corresponding beam in-
dex to the CBS. The CBS selects the users having the largest
SINRs for transmission. The aim of our work is to study the
effect of SINR feedback quantization on the throughput of the
secondary system. To do this, we derive an accurate statisti-
cal characterization of ordered beams SINR and then we de-
rive the closed-form expression of the system throughput with
SINR feedback quantization based on Lloyd-Max algorithm.

Index Terms— Cognitive radio, opportunistic beamform-
ing, feedback quantization, Lloyd-Max quantizer

1. INTRODUCTION

Cognitive radio (CR) is a novel approach for improving the
utilization of the radio electromagnetic spectrum [1]. It al-
lows unlicensed (secondary) users to share the spectrum with
licensed (primary) users without significantly impacting their
communication [2]. In [3], we proposed an opportunistic
beamforming scheduling scheme of secondary users (SUs)
which can share the spectrum with a primary user (PU) in
an underlay cognitive radio network. We assumed that the
cognitive base station (CBS) does not have full channel state
information (CSI) from SUs while it has an imperfect CSI
from the PU and we proposed a two-steps scheduling algo-
rithm based on opportunistic beamforming (OB) [4]. In the
first step, orthogonal beams are generated by the CBS to min-
imize the interference to the PU. In the second step, each SU
calculates the signal to interference plus noise ratios (SINRs)
for each beam and feeds back its maximum SINR and the cor-
responding beam index to the CBS. The CBS selects for trans-
mission the users with the highest SINRs and assigns to each
of these users the beam corresponding to the highest SINR. In

practice, the SINRs are quantized before being fed back to the
base station in order to make more efficient use of the limited
resources (bandwidth and power). The SINR quantization for
OB non-cognitive system has been recently studied in the lit-
erature [5–7]. In these studies, the impact of the feedback
quantization on the throughput of OB system is analyzed.

The context of this work is different since it deals with
cognitive radio network. Indeed, we consider the cognitive
users scheduling scheme of [3] and we propose to quantize
the SINR feedback using the minimum mean squared error
(MMSE) optimal quantizer i.e. the Lloyd-Max quantizer [8].
We propose to identify the optimal set of quantization thresh-
olds and to study analytically the impact of quantization on
the throughput of the secondary system. To do this, we study
analytically the statistics of the ordered beam SINRs for a par-
ticular user. The difficulty here comes from the fact that these
SINRs are correlated random variables.

2. SYSTEM MODEL

Fig. 1. System model

We consider the system model illustrated in Figure 1 and
described in [3], where a cognitive radio network coexists
with a primary network. The primary network consists of a
primary base station (PBS) with a single transmitting antenna
and one PU with a single receiving antenna. The cognitive
network comprises K SUs, with a single receiving antenna
each, and a CBS with M transmitting antennas. Through-

23rd European Signal Processing Conference (EUSIPCO)

978-0-9928626-3-3/15/$31.00 ©2015 IEEE 1222



out this paper, we assume that M � K and the frequency
division duplex (FDD) mode is used for both primary and
secondary links. We consider the downlink of the cognitive
radio network in which the CBS transmits independent sig-
nals to Ns scheduled secondary users, 1 ≤ Ns ≤ M − 1
(the scheduling will be explained in the following). We de-
note by S the set of the Ns selected cognitive users. Since
the same carrier frequency is used within the primary and
the secondary networks, the received signals at the SUs are
corrupted by the signal transmitted by the PBS. Let hk =
[hk,1, hk,2, · · · , hk,M ], where hk,t is the channel tap gain be-
tween the t-th transmit antenna of the CBS and the k-th sec-
ondary user, for 1 ≤ t ≤ M and 1 ≤ k ≤ K. Let
g = [g1, g2, · · · , gK ], where gk, for 1 ≤ k ≤ K, denotes the
channel tap gain between the transmit antenna at the PBS and
the k-th cognitive user receive antenna. The entries of channel
vectors hk and g are independent and identically distributed
(i.i.d.) complex Gaussian samples of a random variable with
zero mean and unit variance. We assume that the channels are
constant during the transmission of a burst of T symbols and
vary independently from burst to burst. The received signal at
the k-th cognitive user, for 1 ≤ k ≤ K, can be written as:

yk =
√
Pshk

∑
i∈S

wixi +
√
Ppugkxpu + nk, (1)

where Ps and Ppu denote the transmitted power for each se-
lected cognitive user and for the primary user, respectively.
In this work, fixed power allocation for all selected users is
adopted. The quantities xpu and xi denote the transmitted
data from the PBS to the PU and from the CBS to the i-th SU,
respectively, nk denotes the noise at the k-th cognitive user
which is a zero-mean Gaussian random variable with vari-
ance σ2

k. We assume that the variances σ2
k (for 1 ≤ k ≤ K)

are equal to σ2. The weighting vector wi (of size M × 1)
denotes the beamforming weight vector for the i-th selected
secondary user.

3. OPPORTUNISTIC BEAMFORMING
SCHEDULING WITH SINR QUANTIZATION

In our work, we consider the two steps SUs scheduling
method proposed in [3]. We assume that the CBS has an
imperfect estimate of the interference channel hpu (channel
between the CBS and the PU) and has only partial channels
knowledge about the secondary links (channels between the
CBS and the SUs). In order to reduce the interference to the
PU, the CBS generates, in the first step, orthogonal beams
to the interference channel estimate ĥpu using the Gram-
Schmidt algorithm. In the second step, the CBS selects a set
S of Ns secondary users by applying the opportunistic beam-
forming approach proposed in [4]. Thus, the cognitive base
station transmits the generated beams to all SUs. Then, by
using (1), each SU k calculates the following Ns SINRs by
assuming that xj , 1 ≤ j ≤ Ns, is the desired signal and the

others xi, i 6= j, 1 ≤ i ≤ Ns, are interfering signals as:

SINRk,j =
|hkwj |2 Ps∑Ns

i=1, i 6=j
|hkwi|2 Ps + |gk|2 Ppu + σ2

k

. (2)

In practice, each SU feeds back to the CBS a quantized ver-
sion of its maximum SINR.Thus, the value range of SINRs is
divided into Q = 2b intervals, with boundaries values given
as:

b0 < b1 < . . . < bQ. (3)

If the largest SINR value of user k, denoted by γ1
k , is in the

q-th interval, where 1 ≤ q ≤ Q, i.e. bq−1 < γ1
k ≤ bq ,

then the k-th user will feedback the index q of that interval
together with the index of its best beam. The CBS allocates
the beams to selected users based on the feedback informa-
tion. Specifically, a beam will be assigned to the user who
has the largest SINR interval index, among all the users re-
questing that beam. Notice that if many users feed back the
same quantization interval index for the same beam, one of
these users is selected at random. In addition, it may happen
that no user requests one or several beams. In this case, the
CBS will assign that beam to a randomly chosen SU.

We propose to use in this paper the Lloyd-Max quantizer
[8]. Then, we study the impact of feedback quantization on
the secondary system sum rate. In order to identify the op-
timal set of quantization thresholds and to compute the sum
rate, we derive the statistics of the ordered beam SINR for a
given user.

4. LLOYD-MAX QUANTIZATION

In this section, we consider the Lloyd-Max quantization [8].
Let Γq , for 1 ≤ q ≤ Q, be the reconstruction levels of the
Q-level quantizer Ω (.) defined as:

Ω
(
γ1
k

)
= Γq if bq−1 < γ1

k ≤ bq (4)

The quantizer is designed to minimize the average distortion
DQ given by:

DQ =

Q∑
q=1

∫ bq

bq−1

(γ − Γq)
2 fγ1 (γ) dγ (5)

where E [.] denotes the statistical expectation and fγ1 (γ) is
the pdf of the largest SINR per user which is independent of k
as will be seen in section 6. The expression of fγ1 (γ) will be
given in (18).The necessary conditions to minimize DQ are:{

∂DQ
∂bq

= 0
∂DQ
∂Γq

= 0
(6)

Solving (6) using the Lloyd-Max algorithm, we obtain the
necessary conditions for minimization as:

Γq =

∫ bq
bq−1

γfγ1 (γ) dγ∫ bq
bq−1

fγ1 (γ) dγ
(7)
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bq =
Γq + Γq+1

2
(8)

Mathematically, the decision and the reconstruction levels are
solutions of the above set of nonlinear equations. In general,
closed form solutions to equations (7) and (8) do not exist
and they can be solved by numerical techniques in an iterative
way by first assuming an initial set of values for the decision
levels bq . For simplicity, one can start with decision levels
corresponding to uniform quantization, where decision levels
are equally spaced. Based on the initial set of decision lev-
els, the reconstruction levels can be computed using equation
(7). These reconstruction levels are used in equation (8) to
obtain the updated values of bq . Solutions of equations (7)
and (8) are iteratively repeated until convergence is achieved.
In the next section, we propose to study the impact of SINR
quantization on the secondary system sum rate.

5. SUM RATE OF THE SECONDARY SYSTEM

In this section, we study the throughput of the secondary sys-
tem. The loss in throughput due to the quantization is equal
to:

Rloss = RA −RQ (9)

where RA (respectively RQ) is the throughput of the sec-
ondary system with analog (respectively quantized) feedback.

The throughput of the secondary system with analog feed-
back is expressed as [3]:

RA = Ns

∫ +∞

0

1

1 + γ

(
1− (FS(γ))K

)
dγ, (10)

where FS(x) denotes the cdf of SINRk,j in (2) and is given
in [3]:

FS(x) = 1−

(
Ns−1∑
j=1

aj exp(−x/ρ)
(x+ 1)j

+
aNs exp(−x/ρ)

(αx+ 1)

)
, (11)

where aj , for 1 ≤ j ≤ Ns, are constants.
The exact sum rate expression for the secondary system

with quantized feedback can be calculated as [ [9], Eq. 7.71]:

RQ = Ns

(
K∑
k=1

(
K

k

)(
1

Ns

)k (
Ns − 1

Ns

)K−k
×

(
Q∑
q=1

(
Fγ1 (bq)

)k − (Fγ1 (bq−1)
)k

Fγ1 (bq)− Fγ1 (bq−1)

∫ bq

bq−1

log2 (1 + γ) fγ1 (γ) dγ

))

+

(
Ns − 1

Ns

)K−1 Ns∑
u=2

∫ ∞
0

log2 (1 + γ) fγu (γ) dγ (12)

where fγu (γ) is the pdf of the u-th largest SINR per user and
will be given in (15).

In the next section, we derive the statistics of the ordered
beam SINR for a given user needed in (7), (8) and (12).

6. STATISTICS OF THE ORDERED BEAM SINRS
FOR A PARTICULAR USER

Because the SINR values for a particular user are not indepen-
dent, the order statistics used in [3] cannot be applied. Indeed,
the beam SINRs for the same user k, i.e. SINRk,j in (2), for
1 ≤ j ≤ Ns, are correlated random variables as they involve
the same channel vector hk. The ordered SINRs for a given
user k are denoted by γNsk ≤ · · · ≤ γuk ≤ · · · ≤ γ1

k . Since
for a user k, the channels hk and the noises nk have statistics
which are independent of k, we omit the index k in the fol-
lowing. We show that the cdf of γu, for 2 ≤ u ≤ Ns, is given
by:

Fγu (γ) =

∫ ∞
0

∫ ∞
0

∫ (Ns−u)y1
(u−1)

0

∫ γ
(
y1+y2+z+

1
ρ

)
0

fXu,Y−,Y +,Z (x, y1, y2, z) dxdy1dy2dz. (13)

where ρ = Ps
σ2 and

fXu,Y−,Y +,Z (x, y1, y2, z) =
Ns! (y1 − (u− 1)x)u−2

α (Ns − u)! (u− 1)!

exp
(
−
(
x+ y1 + y2 + z

α

))
U (y1 − (u− 1)x)

(Ns − u− 1)! (u− 2)!

Ns−u∑
i=0

(
Ns − u

i

)
(−1)i (y2 − ix)Ns−u−1 U (y2 − ix)

x > 0, y1 > (u− 1)x, y2 < (Ns − u)x, z > 0 (14)

where U (.) denotes the unit step function and α =
Ppu
Ps

.
Proof: See the Appendix.
By taking derivative of (13) with respect to γ, the pdf of γu

is given by

fγu (γ) =

∫ ∞
0

∫ ∞
0

∫ (Ns−u)y1
(u−1)

0

(
y1 + y2 + z +

1

ρ

)

fXu,Y−,Y +,Z

(
γ

(
y1 + y2 + z +

1

ρ

)
, y1, y2, z

)
dy1dy2dz. (15)

We also show that the cdf of the largest SINR for a particular
user, denoted by γ1, is given by

Fγ1 (γ) =

∫ ∞
0

∫ ∞
0

∫ γ
(
y+z+ 1

ρ

)
0

fX1,Y,Z (x, y, z) dxdydz.

(16)
where

fX1,Y,Z (x, y, z) =
Ns

α (Ns − 2)!

Ns−1∑
i=0

(
Ns − 1

i

)
(−1)i

(y − ix)Ns−2 exp
(
−
(
x+ y +

z

α

))
U (y − ix) (17)

We omit here the proof of (17) due to the lack of space.
After taking derivative with respect to γ, by applying the

binomial theorem and using equation (2.323) in [10], we can
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obtain the closed-form expression for the pdf of the largest
SINR per user, fγ1 (γ), given by:

fγ1 (γ) =
Ns

α (Ns − 2)!

Ns−1∑
i=0

(Ns − 1

i

)
(−1)i

Ns−2∑
j=0

(Ns − 2

j

)

×
(−iγ)j(
γ + 1

α

)j+1
exp

(
−
γ

ρ

(
1 +

i (γ + 1)

1 − iγ

))Ns−2−j∑
d=0

(Ns − 2 − j

d

)
× (1 − iγ)d

(
−
iγ

ρ

)Ns−2−j−d (
Σ1
i,j,d (γ) + Σ2

i,j,d (γ)
)
U (1 − iγ)

(18)

where Σ1
i,j,d (γ) =

∑d
l=0

 d!

(
(j+1)!

(γ+ 1
α )

+ j!
ρ

)(
iγ

ρ(1−iγ)

)d−l
(d−l)!(x+1)l+1

 and

Σ2
i,j,d (γ) =

∑d+1
l=0

(
(d+1)!j!

(
iγ

ρ(1−iγ)

)d+1−l

(d+1−l)!(γ+1)l+1

)
.

7. SIMULATION RESULTS

In this section, we present simulation results of our proposed
scheduling algorithm based on quantized SINR feedback. We
compare the performance of the secondary system sum rate
for the Lloyd-Max quantization and the uniform quantization.
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Fig. 2. Sum rate versus the number K of secondary users for
different quantization schemes for b = 2, M = 4, Ns = 3
and ρ = 5 dB

Figure 2 shows the sum rate versus the number K of sec-
ondary users for b = 2, M = 4, Ns = 3 and ρ = 5 dB for
the Lloyd-Max quantization and the uniform quantization. It
also shows the sum rate for the ideal scheme [3] with ana-
log best beam SINR feedback (full feedback). In figure 2,
the curves obtained by using the numerical results in (10) and
(12) (red curves) are compared to the simulation results (blue
solid curves) for the ideal scheme and the two quantization
schemes. The figure shows that the analytical curves are in-
line with the curves obtained by simulations. We notice that
the sum rate increases with the total number of cognitive users
since the multi-user diversity increases [4]. Moreover, it can
be seen from the figure that the use of different quantization

schemes leads to a loss in terms of throughput. However, the
Lloyd-Max quantizer clearly outperforms the uniform quan-
tizer as expected.
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Fig. 3. Sum rate loss versus the number b of quantization bits
for different quantization schemes forK = 50,M = 4,Ns =
3 and ρ = 5 dB

Figure 3 shows the sum rate loss versus the number b of
quantization bits for the Lloyd-Max quantizer and the uniform
quantizer for K = 50, M = 4, Ns = 3 and ρ = 5 dB. We
notice that the curves obtained by using the numerical results
in (9) (red curves) are inline with the simulation results (blue
solid curves) for the two quantization schemes considered in
this figure. We remark that the gap between the Lloyd-Max
quantizer and the uniform quantizer in terms of sum rate de-
creases as b increases. Moreover, for both quantizers, the sum
rates converge to the one obtained with full feedback as b in-
creases.

8. CONCLUSIONS

In this paper, we considered a SUs scheduling scheme based
on opportunistic beamforming. We analyzed the impact of
SINR feedback quantization on the throughput of the sec-
ondary system. In particular, we derived the accurate statisti-
cal characterizations of ordered beams SINRs and we gave the
exact analytical expression of the sum rate for the scheduling
scheme based on quantized SINR feedback. We considered
the Lloyd-Max quantizer and we compared its performance
with that of the uniform quantizer.

9. APPENDIX

Let Xk,j = |hkwj |2 for 1 ≤ k ≤ K and 1 ≤ j ≤ Ns,
ordered as X1

k > X2
k > . . . > XNs

k , where Xu
k denotes the

u-th largest value (2 ≤ u ≤ Ns) among the Ns values Xk,j

for 1 ≤ j ≤ Ns. We notice that SINRk,j is the u-th largest
beam SINR, for user k, if and only if Xk,j = Xu

k . Based on
this observation, the u-th largest SINR of user k, denoted γuk ,
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can be written as:

γuk =
Xu
k

Y −k + Y +
k + Zk + 1

ρ

(19)

where Y −k =
∑u−1

i=1
Xi
k, Y +

k =
∑Ns

i=u+1
Xi
k, Zk = |gk|2 α,

α =
Ppu
Ps

and ρ = Ps
σ2 . Since for a user k, the channels hk

and the noises nk have statistics which are independent of k,
we omit the index k in the following. The cdf of γu can be
calculated in terms of the joint pdf of Xu , Y −, Y + and Z,
denoted by fXu,Y −,Y +,Z (x, y1, y2, z) , as

Fγu (γ) =

∫ ∞
0

∫ ∞
0

∫ (Ns−u)y1
(u−1)

0

∫ γ
(
y1+y2+z+

1
ρ

)
0

fXu,Y−,Y +,Z (x, y1, y2, z) dxdy1dy2dz. (20)

After taking derivative with respect to γ, the pdf of γu is given
by

fγu (γ) =

∫ ∞
0

∫ ∞
0

∫ (Ns−u)y1
(u−1)

0

(
y1 + y2 + z +

1

ρ

)
fXu,Y−,Y +,Z

(
γ

(
y1 + y2 + z +

1

ρ

)
, y1, y2, z

)
dy1dy2dz. (21)

Applying Bayesian rules, the joint pdf fXu,Y −,Y +,Z (x, y1, y2, z),
can be obtained as follows [9]

fXu,Y−,Y +,Z (x, y1, y2, z) = fXu (x)×fY− (y1)×fY + (y2)×fZ (z)
(22)

where x > 0, y1 > (u− 1)x, y2 < (Ns − u)x, z > 0. Since
the random variables Xk,j , for a given k and 1 ≤ j ≤ Ns,
are i.i.d. random variables and have a gamma distribution
Γ (1, 1), fXu (x), 1 ≤ u ≤ Ns, can be obtained as [ [11],
Eq.2.1.6]:

fXu (x) =
Ns!

(Ns − u)! (u− 1)!
(1− exp (−x))Ns−u exp (−ux)

(23)
The pdfs fY − (y1) and fY + (y2) can be obtained, respec-
tively, as [ [12], Eqs. 26, 27]:

fY− (y1) =
(y1 − (u− 1)x)u−2 exp (−y1 + (u− 1)x)

(u− 2)!
U (y1 − (u− 1)x) ,

(24)

fY + (y2) =
1

(Ns − u− 1)!

Ns−u∑
i=0

(
Ns − u

i

)
(−1)i

× (y2 − ix)Ns−u−1 exp (−y2)

(1− exp (−x))Ns−u
U (y2 − ix) , (25)

where U (.) denotes the unit step function. The random vari-
able Z follows the gamma distribution Γ (1, α) and the PDF
fZ (z) is given by:

fZ (z) =
1

α
exp

(
− z
α

)
. (26)

Finally, after proper substitution, we can obtain the analyt-
ical expression given in (14).
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