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ABSTRACT

In this paper, we develop randomized simultaneous orthog-

onal matching pursuit (RandSOMP) algorithm which com-

putes an approximation of the Bayesian minimum mean-

squared error (MMSE) estimate of an unknown rowsparse

signal matrix. The approximation is based on greedy iter-

ations, as in SOMP, and it elegantly incorporates the prior

knowledge of the probability distribution of the signal and

noise matrices into the estimation process. Unlike the ex-

act MMSE estimator which is computationally intractable to

solve, the Bayesian greedy pursuit approach offers a compu-

tationally feasible way to approximate the MMSE estimate.

Our simulations illustrate that the proposed RandSOMP al-

gorithm outperforms SOMP both in terms of mean-squared

error and probability of exact support recovery. The benefits

of RandSOMP are further illustrated in direction-of-arrival

estimation with sensor arrays and image denoising.

Index Terms— Bayes, minimum mean-squared error

(MMSE), multichannel sparse recovery, compressed sensing.

1. INTRODUCTION

Multichannel sparse signal recovery, an extension of com-

pressed sensing or single measurement vector (SMV) model,

has found applications in many areas of signal processing

[1–3]. A number of greedy pursuit algorithms (SOMP, SIHT,

etc) have been proposed to recover the multichannel sparse

signals in a non-Bayesian framework [4–6]. In cases where

some prior knowledge about the distribution of the signals is

available, Bayesian methods often provide a more effective

approach as shown in [7, 8]. In this paper, we develop an al-

gorithm for multichannel sparse signals that takes the prior

statistical knowledge of the signal and noise distributions into

account and thereby produces more accurate estimates than

the conventional greedy pursuit methods such as simultane-

ous orthogonal matching pursuit (SOMP) [4].

We consider the multiple measurement vectors (MMV)

model [2] in which the goal is to recover a set of Q unknown

complex-valued signal vectors xi ∈ C
N from a set ofQmea-

surement vectors yi ∈ C
M . The vectors xi are assumed to

be sparse, i.e., only a small fraction of their entries are non-

zero. The sparse vectors are measured according to the model,
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yi = Φxi+ei, i = 1, 2, . . . , QwhereΦ ∈ C
M×N is a known

measurement matrix and ei ∈ C
M denote the unobservable

measurement noise. Typically, M < N , so the linear model

is underdetermined. In matrix form, the model can be written

as

Y = ΦX+E, (1)

where Y ∈ C
M×Q with yi as its ith column vector, X ∈

C
N×Q contains the unknown sparse vectors xi while E ∈

C
M×Q is the noise matrix.

If the unknown sparse vectors were incoherent then there

is no obvious gain in trying to recover the sparse vectors si-

multaneously (jointly). The benefits of simultaneous sparse

recovery arise when sparse signal vectors are all predomi-

nantly supported on a common support set. In other words,

the signal matrix X is assumed to be K-rowsparse, i.e., at

most K rows of X contain non-zero entries. This means that

the row support of X, defined as the index set of rows con-

taining non-zero elements, rsupp(X) = {i ∈ {1, . . . , N} :
xij 6= 0 for some j}, has cardinality less than or equal to K.

The objective of multichannel sparse recovery is to recover

the unknown signal matrixX by knowing only Φ andY.

In this paper, we derive the Bayesian MMSE estimator

of X. Since computing the exact MMSE estimate is infeasi-

ble, we show how the greedy pursuit approach of SOMP can

be utilized in finding an approximate MMSE estimator. The

method is a generalization of randomized orthogonal match-

ing pursuit (RandOMP) [7] from SMV model to complex-

valued MMVmodel. The algorithm can also be used for real-

valued measurements with obvious modifications.

The paper is organized as follows. In Section 2 we de-

velop the BayesianMMSE estimator. In Section 3 we develop

the RandSOMP algorithm for approximating the MMSE es-

timator. Section 4 provides simulation results illustrating the

effectiveness of the proposed RandSOMP algorithm. In Sec-

tion 5, we demonstrate the usage of RandSOMP for direction-

of-arrival (DOA) estimation using sensor arrays and image

denoising. We conclude our paper in Section 6.

2. THE MMSE ESTIMATOR

2.1. Assumptions

The elements of the noise matrix E are assumed to be inde-

pendent and identically distributed (i.i.d.) complex normal

23rd European Signal Processing Conference (EUSIPCO)

978-0-9928626-3-3/15/$31.00 ©2015 IEEE 709



random variables with zero mean and known variance σ2
e , so

E hasmatrix variate complex normal (MCN) distribution, de-

noted as E ∼ MCNM,Q

(
0, σ2

eIM , IQ
)
, where IM denotes

the M ×M identity matrix. In the Bayesian framework we

treat X and its row support Γ = rsupp(X) as random vari-

ables with known prior probability distributions. The row

support Γ has known fixed cardinalityK (i.e. |Γ| = K) and a

uniform prior distribution (i.e., all row supports are equiprob-

able), p(Γ) = 1/|Ω| for Γ ∈ Ω, where Ω denotes the set of

all row supports that have cardinality K and |Ω| =
(
N
K

)
. For

a given row support Γ, letX(Γ) denote the K ×Q matrix re-

stricted to thoseK rows ofX that are indexed by the support

set Γ. Then X(Γ) = 0 by definition, where Γ is the comple-

ment of Γ. Furthermore, let each element ofX(Γ) be an i.i.d.

complex normal random variable with zero mean and known

variance σ2
x, soX(Γ) ∼MCNK,Q

(
0, σ2

xIK , IQ
)
, with p.d.f.

p(X(Γ) |Γ) =
1

(πσ2
x)

KQ
exp

(
− 1

σ2
x

∥∥X(Γ)

∥∥2

F

)
, (2)

where ‖·‖F denotes the Frobenius norm, i.e., ‖X‖F =√
Tr(XHX) = ‖vec(X)‖, where vec(X) is a vector formed

by stacking the columns ofX on top of each other and ‖·‖ de-
notes the usual Euclidean norm. We define the signal-to-noise

ratio (SNR) as γ = σ2
x/σ

2
e .

2.2. Derivation of the MMSE estimator

The MMSE estimate of X is obtained as the conditional

mean, i.e., the mean of the posterior distribution ofX,

X̂MMSE = E [X |Y] =
∑

Γ∈Ω

p(Γ|Y)E [X |Y,Γ] , (3)

where E[X|Y,Γ] is K-rowsparse since E
[
X(Γ) |Y,Γ

]
= 0

for the complement of Γ. In order to evaluate the non-zero

sub-matrix E[X(Γ) |Y,Γ] one can use Bayes’ rule as follows,

p(X(Γ)|Y,Γ) =
p
(
X(Γ) |Γ

)
p
(
Y |X(Γ),Γ

)

p(Y|Γ) , (4)

where p(Y|Γ) is a normalizing constant for fixed Y and Γ.
Moreover,

Y |X(Γ),Γ = ΦΓX(Γ) +E,

where ΦΓ is an M × K matrix restricted to those columns

of Φ that are indexed by Γ. For a given X(Γ), we have that

Y |X(Γ),Γ ∼MCNM,Q

(
ΦΓX(Γ), σ

2
eIM , IQ

)
, so

p
(
Y |X(Γ),Γ

)
=

1

(πσ2
e)

MQ
exp

(
− 1

σ2
e

∥∥Y −ΦΓX(Γ)

∥∥2

F

)
.

(5)

Ignoring the normalizing constant p(Y|Γ) and using the

closed-form expressions of p(X(Γ)|Γ) and p(Y |X(Γ),Γ)
from (2) and (5), we can rewrite (4) as

p(X(Γ)|Y,Γ) ∝ exp

(
−

∥∥X(Γ)

∥∥2

F

σ2
x

−
∥∥Y −ΦΓX(Γ)

∥∥2

F

σ2
e

)
.

Since the prior p(X(Γ)|Γ) and the likelihood p(Y|X(Γ),Γ)
are matrix variate complex normal with known variance, the

posterior p(X(Γ)|Y,Γ) will also be matrix variate complex

normal which is a symmetric unimodal distribution. There-

fore, the mean of the posterior will be equal to its mode,

E
[
X(Γ)|Y,Γ

]
= argmax

X(Γ)∈CK×Q

log p(X(Γ) |Y,Γ).

The above convex optimization problem can be solved by set-

ting the matrix gradient of the objective function to 0 and

solving the resulting set of equations. This results in the fol-

lowing closed-form solution:

E[X(Γ)|Y,Γ] =

(
ΦH

ΓΦΓ +
1

γ
IK

)−1

ΦH
ΓY, (6)

where ΦH
Γ denotes the conjugate transpose of ΦΓ.

For a fixed Y and all Γ ∈ Ω, both p(Y) and p(Γ) are
constant. Therefore, from Bayes’ rule we can conclude that

p(Γ|Y) ∝ p(Y|Γ). Moreover,

p(Y|Γ) =
∫

X(Γ)∈CK×Q

p
(
Y,X(Γ)|Γ

)
dX(Γ) ∝

∫
exp

{
−

∥∥vec(X(Γ))
∥∥2

σ2
x

−
∥∥vec(Y −ΦΓX(Γ))

∥∥2

σ2
e

}
dX(Γ)

(7)

where the integration is over X(Γ) ∈ C
K×Q. Since vec(Y −

ΦΓX(Γ)) = vec(Y)−(IQ⊗ΦΓ)vec(X(Γ)), where⊗ denotes

the Kronecker product, the integral in (7) simplifies to

p(Y|Γ) ∝ wΓ = exp

(
vec(ΦH

ΓY)HP−1
Γ vec(ΦH

ΓY)

σ4
e

+ log
(
det(P−1

Γ )
))

,

where

PΓ =
1

σ2
e

IQ ⊗ΦH
ΓΦΓ +

1

σ2
x

IKQ.

The above result is derived using similar arguments as those

used in [9, p. 214, 215] for the real-valued SMV model (Q =
1). Finally, the posterior p(Γ|Y) of Γ, which is proportional
to its likelihood p(Y|Γ), is obtained by normalizing wΓ, i.e.,

p(Γ|Y) =
wΓ∑

Γ̃∈Ω

wΓ̃

. (8)

3. RANDOMIZED SIMULTANEOUS OMP

Now we develop RandSOMP algorithm for approximating

the MMSE estimator. The MMSE estimate of X given in

(3) can be expressed in closed-form using (6) and (8). But
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the summation in (3) needs to be evaluated for all possible

Γ ∈ Ω, which is computationally infeasible due to the large
size of Ω (|Ω| =

(
N
K

)
). One could approximate the MMSE

estimate by randomly drawing a small number of sample row

supports according to p(Γ|Y) and evaluating the summation
in (3) over these row supports. Again, due to the large size

of the sample space Ω, this approach is not feasible. Next we
describe how one can overcome these limitations via SOMP-

like greedy pursuit. We propose to draw row supports itera-

tively by sampling one element at a time from a much smaller

space. This results in row supports that are drawn from an

approximation of p(Γ|Y).
Suppose the rowsparsity of X is one, i.e., |Γ| = K = 1.

This implies that Ω = {1, 2, . . . , N}, and

PΓ={j} = (cj/σ
2
x) · IQ for j ∈ Ω,

where cj = 1 + γ · ‖φj‖2 and φj denotes the jth column of
Φ. Furthermore, p(Γ = {j}|Y) ∝ wΓ={j} = wj is given by

wj = exp

{
γ

σ2
e

· ‖Y
Hφj‖2
cj

−Q log cj

}
. (9)

Since the size of the sample space |Ω| = N , drawing a ran-

dom row support Γ becomes trivial. For the case when |Γ| =
K > 1, we propose an iterative greedy procedure that looks
similar to SOMP and builds up the random row support iter-

atively one element at a time (see Algorithm 1). In the first

iteration, we randomly draw an element j1 of Γ with proba-

bility proportional to the weights given in (9). We then com-

pute the MMSE estimate X̃ ofX assuming Γ = {j1} and the
residual error matrix R = Y − ΦX̃. In the second iteration

we modify the weights in (9) by substituting the matrixY by

R. We randomly draw another element j2 of the row support

using the modified weights and compute the MMSE estimate

assuming Γ = {j1, j2}. This process continues for K iter-

ations. After K-th iteration we have a randomly drawn row

support Γ = {j1, j2, . . . , jK} from a distribution that approx-

imates p(Γ|Y).
To reduce the estimation error, we run the above greedy

procedure L number of times and average the results. Let Ω⋆

denote the set of L row supports obtained from L independent

runs. The approximate MMSE estimate ofX is then

X̂AMMSE =
1

L

∑

Γ∈Ω⋆

E
[
X |Y,Γ

]
. (10)

The posterior probability mass p(Γ|Y) of each row support

does not appear explicitly in the above formula. This is

because the row supports having high probability are more

likely to be selected in the sampling process than the row

supports with low probability, so the row supports are repre-

sented in Ω⋆ in (approximate) proportion to their probability

masses. Hence, to approximate (3) simple averaging suffices.

In general, the approximate MMSE estimate of X given

in (10) will not be rowsparse. In order to obtain rowsparse

Algorithm 1: RandSOMP algorithm

Input: Φ ∈ C
M×N ,Y ∈ C

M×Q,K, L, γ, σ2
e

for l← 1 to L do

Γ(0) ← ∅, X̃(0) ← 0

for i← 1 toK do

R← Y −ΦX̃(i−1)

Draw an integer j randomly with probability
proportional to

wj = exp

{
γ

σ2
e

· ‖R
Hφj‖2
cj

−Q log cj

}

Γ(i) ← Γ(i−1) ∪ {j}

X̃
(i)

(Γ(i))
←

(
ΦH

Γ(i)ΦΓ(i) +
1

γ
· Ii

)−1

ΦH
Γ(i)Y

X̃
(i)

(Γ
(i)

)
← 0

end

X̂(l) ← X̃(K)

end

Output: X̂AMMSE ←
1

L

L∑

l=1

X̂(l)

approximate MMSE estimate, we use an approach similar to

the one used in RandOMP [7]. Let HK(X̂AMMSE) denote the
matrix obtained by setting all but the K largest (in terms of

their ℓ2-norm) rows of X̂AMMSE to 0. Let Γ̃ be the row support

of HK(X̂AMMSE), i.e., Γ̃ = rsupp
(
HK(X̂AMMSE)

)
. A K-

rowsparse estimate ofX is then obtained as

X̂rowsparse = E
[
X |Y, Γ̃

]
. (11)

4. SIMULATION RESULTS

Next we provide simulation results comparing the perfor-

mance of SOMP and RandSOMP. In order to illustrate the

fact that the joint recovery of the rowsparse matrix in the

MMV model is a much more effective approach, we include

the results of the case where RandOMP is used to recover the

individual sparse vectors one by one. It is demonstrated that

RandSOMP performs better than RandOMP both in terms

of normalized mean-squared error (MSE) and probability of

exact support recovery. RandSOMP also outperforms SOMP

in terms of normalized MSE, which is expected since Rand-

SOMP approximates the MMSE estimate. More importantly,

RandSOMP also outperforms SOMP in terms of probability

of exact support recovery.

The simulation set-up is as follows. We generate Q = 30
sparse vectors each of length N = 300 which share the same
randomly chosen support of cardinality K = 20. All non-

zero entries of the sparse vectors are independently drawn

from the standard complex normal distribution (i.e., σ2
x = 1).

The elements of the measurement matrixΦ ∈ C
150×300 (i.e.,

M = 150) are independently drawn from the standard com-
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Fig. 1. PER rates vs SNR. M = 150, N = 300, K = 20,
L = 15, Q = 30. Sparse RandSOMP has higher PER rates

for all the given SNR levels.
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Fig. 2. Normalized MSE vs SNR. M = 150, N = 300, K =
20, L = 15,Q = 30. RandSOMP has lower normalized MSE

for all the given SNR levels.

plex normal distribution and each column is normalized to

have unit norm. The measurements are contaminated by zero

mean additive complex Gaussian noise with variance σ2
e . The

SNR is defined as γ = σ2
x/σ

2
e . The number of randomly

drawn row supports in both RandSOMP and RandOMP is

L = 15. The experiments are averaged over 100 realizations.

First, the recovery of the correct signal support is consid-

ered. Figure 1 depicts the empirical probability of exact (sup-

port) recovery (PER) rates as a function of SNR. Since Rand-

SOMP and RandOMP produce estimates that are not neces-

sarily rowsparse, PER rates are computed for the sparsified

estimates given in (11). (In addition to ensuring sparsity of

the estimates, this approach also brings the benefits of mul-

tiple measurement vectors to RandOMP.) As shown in Fig-

ure 1, the proposed RandSOMP algorithm outperforms both

SOMP and RandOMP. Figure 2 depicts the empirical normal-

ized MSE (‖X̂ − X‖2F
/
‖X‖2F ). Again RandSOMP has the

best performance at all SNR levels. One can also observe that

in low SNR regime, the randomized algorithms are perform-

ing much better than the non-randomized SOMP. With in-

creasing SNR, the performance of RandOMP improves much

more slowly in comparison to RandSOMP. The performance

of SOMP improves much more sharply, and at 2 dB SNR

SOMP performs better than RandOMP. As expected, Rand-

SOMP has the best performance since it is an approximate

MMSE estimate.

Next we fix the SNR value at 3 dB and vary the number

of measurement vectors Q. Figure 3 depicts the PER as a

function of Q. When Q = 1, the MMV model is reduced

Number of measurement vectors (Q)
0 5 10 15 20 25 30 35 40 45 50

P
E
R

0

0.2

0.4

0.6

0.8

1

SOMP
Sparse RandSOMP

Fig. 3. PER rates vs Q. M = 150, N = 300, K = 20,
L = 15, SNR = 3 dB. Sparse RandSOMP has higher PER

rates for all the given values of Q.

to the SMV model and thus SOMP and RandSOMP become

equivalent to OMP [10] and RandOMP respectively. As Q
increases we expect to gain some improvement through joint

processing of multiple measurement vectors. This is evident

from Figure 3. When Q = 1, the PER rate is near 0 for both
SOMP and RandSOMP. With increasing Q the PER rate in-

creases and reaches full PER (= 1) atQ = 50. Again observe
that for almost all the employed values of Q, the proposed
RandSOMP algorithm performs better than SOMP.

5. APPLICATIONS

5.1. DOA estimation with sensor arrays

We consider a DOA estimation problem using a uniform lin-

ear array (ULA) of M sensors that receives signals from K
narrowband incoherent farfield plane-wave sources (M >
K). The output of the array at time t is modeled as y(t) =
Φ(θ)xθ(t) + e(t), where xθ(t) ∈ C

K represents the

source signals, θ = (θ1, . . . , θK)T contains the directions-

of-arrival (DOAs) of the K sources, Φ(θ) ∈ C
M×K is

the measurement matrix whose columns consist of steer-

ing vectors and e(t) ∈ C
M is the additive noise vec-

tor. For the ULA with half-wavelength sensor spacing

and ideal omnidirectional sensors, the steering vectors are

Φi(θi) = (1 e−jπ sin(θi) . . . e−jπ(M−1) sin(θi))T. Since θ is

unknown, the matrix Φ(θ) is also unknown. The goal is to
estimate θ and xθ(t) from y(t).

In [3], DOA estimation was modeled as a sparse re-

covery problem using steering vectors for a pre-determined

set of N different DOA values. If the set contains the true

DOAs of the source signals, then the array output at time t is
y(t) = Φx(t) + e(t), whereΦ ∈ C

M×N is the matrix of the

N known steering vectors and x(t) ∈ C
N is a K-sparse vec-

tor whose non-zeros entries consists of source signal xθ(t).
Given that we have multiple measurements (snapshots) at

time instants t = t1, t2, . . . , tQ, the array output can be mod-
eled by the MMV model,Y = ΦX+E, where each column

of Y represents array’s output at one time instant. There-

fore, recovering the row support of the K-sparse matrix X is

equivalent to finding the DOAs of theK sources.

We investigate the performance of RandSOMP for DOA
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Fig. 4. Relative frequency vs DOA (degrees). M = 20, N =
90, Q = 50,K = 2, L = 10, SNR = −15 dB.

(a) (b) (c)

Fig. 5. Image denoising with RandSOMP (L = 10, C =
0.99). (a) Original image; (b) Noisy image with PSNR = 12
dB; (c) Denoised image with PSNR = 22.34 dB.

estimation under the following simulation settings. The ar-

ray consists of M = 20 sensors which receive signals from

K = 2 sources located at θ1 = 0◦ and θ2 = 8◦. The source
signals are (spatially and temporally) independent standard

complex Gaussian random variables. The set of N = 90 pre-
determined DOA values are taken in the interval [−90◦, 88◦]
with 2◦ step size. We take Q = 50 time measurements that
are corrupted by a zero mean additive white Gaussian noise

with SNR = −15 dB. The number of randomly drawn sup-
ports in RandSOMP is L = 10. The DOAs of the two sources
are estimated using RandSOMP, SOMP and MUSIC and the

experiments are repeated over 1000 trials. Figure 4 shows

the relative frequencies of estimated DOAs of the three al-

gorithms. At the given challenging SNR scenario (-15 dB)

and rather low sample size (Q = 50), none of the considered
methods is able to offer perfect recovery (i.e., mass 1 at true

DOA’s). Nevertheless, RandSOMP is able to provide accurate

estimation more frequently than both SOMP and MUSIC.

5.2. Image denoising

Next we apply RandSOMP for denoising RGB color images.

We process the noisy Lena RGB image of size 256 × 256
in small overlapping patches of size 8 × 8. The patches are
modeled asYi = Ui+Ei, whereUi ∈ R

64×3 represents the

original noise-free patches and Ei represents additive white

Gaussian noise. The original patchesUi are modeled to have

rowsparse representations Xi ∈ R
192×3 in an overcomplete

dictionary Φ ∈ R
64×192 (i.e., Ui = ΦXi). The dictionary

Φ is formed from the concatenation of the following three

unitary subdictionaries: symlet-4, coiflet-4, and the discrete

cosine transform (DCT-II). The aim in image denoising is to

recover the noise-free patches Ui by finding their rowsparse

representations Xi from the MMV model, Yi = ΦXi + Ei.

In image denoising, the stopping criterion of RandSOMP is

based on the norm of the residual error, i.e., RandSOMP stops

when ‖R‖F <
√
64× 3 · Cσe, where C is a tuning param-

eter. Figure 5 shows the denoised Lena image using Rand-

SOMP with L = 10 and C = 0.99. The peak signal-to-noise
ratio (PSNR) in the noisy image is set at 12 dB. RandSOMP

produces more than 10 dB improvement in the PSNR value.

6. CONCLUSION

In this paper, we developed an algorithm called RandSOMP

that approximates the Bayesian MMSE estimator of the rows-

parse signal in the MMVmodel. In comparison to SOMP, the

non-Bayesian greedy method, RandSOMP achieves higher

PER and lower MSE when adequate prior statistical knowl-

edge of the signal distribution is available. The benefits of

using RandSOMP for DOA estimation and image denoising

were demonstrated by practical examples.
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