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ABSTRACT

Multifractal time series, characterized by a scale invariance
and large fluctuations at all scales, are found in many fields of
natural and applied sciences. Here we consider a quite general
type of multifractal time series, called multifractal random
walk, as non stationary stochastic processes with intermit-
tent stationary increments. We first quickly recall how such
time series can be analyzed and characterized, using struc-
ture functions and arbitrary order Hilbert spectral analysis,
and then we discuss the simulation approach. Here we re-
view recent works on this topic. We provide an unification of
the works published, and discuss how to choose parameters
in stochastic simulations in order to simulate a multifractal
series with desired properties. In the lognormal framework
we provide a new h — p plane expressing the scale invariant
properties of these simulations.

Index Terms— Scaling, Multifractal random walks, In-
termittency, Stochastic modeling, Time series

1. INTRODUCTION: ANALYSIS OF
MULTIFRACTAL TIME SERIES

We consider here the properties of a time series X (¢), as-
sumed to have scaling statistics and intermittent fluctuations.
In this section we quickly present the data analysis part, first
the classical Fourier approach and structure functions, then
Empirical Mode Decomposition associated with Hilbert spec-
tral analysis. In the next section we discuss the modeling part.

1.1. Fourier analysis and structure functions

The scaling is usually revealed through a Fourier spectrum of
the form Ex (f) = Cf~#, where C is a constant and 3 > 0
is the spectral exponent. This can also be done using wavelet
analysis. This spectral analysis usually helps to detect the
scaling range of the data, providing a smaller and larger scale
(frequency scale or temporal scale) for the scaling regime.
On this range of scales, the intermittency is classically ex-
pressed and characterized using the structure functions. We
consider the moments of order ¢ > 0 of fluctuations at scale
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4, My(q) = (| X(t+£) — X(¢)|?) of X(¢), called structure
functions, where / is the scale belonging to the scaling range.
Since we are dealing with scaling processes that have station-
ary increments, we expect the following scaling behavior:

My(q) = A 5 Q)

where A, is a parameter independent from the scale, and
¢(q) the scaling moment function, with 8 = 1 + {(2), and
1 < B < 3, required by the convergency condition. The
knowledge of the full {(q) function then provides much more
information than the single parameter 5. Some completely
different stochastic processes may possess the same spectral
exponent, showing that, when doing data analysis and model
assessment, estimation of ((gq) on a full range of values is
much more useful than only estimating the single parameter
B. Figure 1 shows the ((q) function for several classical linear
stochastic processes (Brownian motion, fractional Brownian
motion, Lévy stable motion); a multifractal time series with a
nonlinear {(q) function is also shown.

1.2. Empirical Mode Decomposition and Hilbert Spectral
Analysis

We also present another method, which has been used to char-
acterize multifractal time series [1], based on an amplitude-
time-frequency analysis: Empirical Mode Decomposition and
Hilbert Spectral analysis.

Empirical Mode Decomposition (EMD) has been intro-
duced in 1998 as a data-driven method especially adapted for
nonlinear and non stationary time series [2,3]. It is a way to
decompose a series into a sum of modes, each mode being a
time series with a dominant scale. Modes are extracted us-
ing an algorithm based on spline interpolation between local
maxima and minima (see details in the original paper). After
application of this algorithm, the orignal time series is written
as:

X)) = 3 Chl#) + ralt) %)

where C;(t) is the mode number ¢ and r,, (t) is the residual, a
monotonic function.
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Fig. 1. Typical moment functions ((g) for several cases,

Brownian motion, fractional Brownian motion for H = 0.3,
Lévy stable motion with a = 1.5 and a multifractal time se-
ries with a nonlinear moment function.

With extracted modes, one can apply the associated
Hilbert spectral analysis to each component C;, in order
to extract an energy time-frequency information from the
data [1]. The Hilbert transform is applied to the mode series

C(t) as
( ) ~ 1 C(tl) !

This enables to construct the analytical signal [4] C;(t) =
Ci(t) + jCi(t) = Ai(t)e’% ™). This way a local ampli-
tude and phase can be extracted from the mode C;(t), at
each time t: A;(t) = [Ci(t)? + C?(t)]*/? and 6;(t) =
arctan (C’i(t) /C’z(t)> The instantaneous frequency is

defined as the derivative of the phase function w;(t) =
5=df;(t)/dt. This procedure is the classical Hilbert spec-
tral analysis [4,5]. The combination of EMD and HSA is
also called Hilbert-Huang Transform (HHT). In general, this
Hilbert-based transform can be seen as a generalization of
the Fourier transform, since it allows frequency modulation
and amplitude modulation simultaneously. The EMD-HSA
methodology is a time-energy-frequency approach: it pro-
vides at each time ¢, n values of instantaneous amplitude
A;(t) and instantaneous frequency w;(t), where n is the
number of modes.

In recent works (Huang et al., 2008, 2011), we have de-
veloped a generalization of the EMD-HSA methodology, to
help characterizing the intermittent properties of multifractal
random walk time series in the amplitude-frequency space. At
each time step, and for each n modes, a local amplitude A and
alocal frequency w are extracted. This can be used to generate
a joint probability density function (pdf) p(w,.4). With the
joint pdf p(w, .A), the Hilbert marginal spectrum is estimated

as h(w) = 0+°C p(w, A)A2dA. This definition is a second-

1019

order statistical moment. In order to study the intermittency
of the time series fluctuations, it is thus natural to generalize
this approach to arbitrary-order moment ¢ > 0 [1,6,7]:

+o0o
Ly(w) = / plw, A)AtdA 4

In the case of scale invariance, the following power-law be-
havior is expected:

Ly(w) ~ w @ (5)

in which £(q) is the Hilbert-based scaling exponent function.
Due to the integration operator, £(q) — 1 can be associated
with ((¢) from structure-function analysis.

This provides another way to extract the scaling exponent
function ((q), which is useful when there are energetic struc-
tures at a given scale (i.e. large scale forcing) since in such
situation the structure function approach fails [1,6, 7].

2. GENERATION OF A NON-STATIONARY
MULTIFRACTAL TIME SERIES

The scaling property presented above has been given sev-
eral denominations in the last thirty years. It has been called
“non-stationary” multifractals [8], “non-conservative” multi-
fractals [9], “multiaffine” field [10-12], and more recently,
“multifractal random walk™ [13, 14]. We shall use here the
name “multifractal random walk”, since it has gained pop-
ularity in the fields of continuous simulations and financial
modelling using multifractal models.

The first proposals, in the 1990s, to generate such time se-
ries were discrete constructions [10, 11, 15-18]. They mostly
consisted of taking the modelled non-stationary field (e.g. tur-
bulent velocity) as a sum of a multiplicative and correlated
positive field, and a random signed term. These models did
not have straightforward continuous expressions. In 2001 a
model was proposed, mainly with an objective of financial
applications, called “multifractal random walk” [13]. It was
mainly related to the proposal of [15]: the process is the dis-
crete sum of a product of gaussian terms (to express the sign
of the fluctuations) and of correlated lognormal terms.

The multifractal random walk was the continuous limit
of this discrete sum. The objective was to model financial
fluctuations, but this process had more general applications,
and in all fields with all values of H = {(1) (see below).

The first fully continuous (log-ID) multifractal construc-
tions were published in the late 1990s and early 2000s: there
have been several proposals, belonging to two different fam-
ilies to generate positive multifractal measures or multifrac-
tal random walks using continuous stochastic processes. We
consider here the latter construction.
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Fig. 2. Examples of moving average simulations of a multi-
fractal process, with a lognormal multiplicative cascade with
1 = 0.2, and values of h = 0.5 (above), and h = 0.3 (below)

2.1. Moving average generation of a non-stationary mul-
tifractal time series

A few recent papers have considered the generation of a non-
stationary multifractal time series (also called multiaffine or
multifractal random walk), using a moving average represen-
tation of the form [19-21]:

X@%:A:mmnmo ©)

where € is a kernel having multiplicative scaling properties
and Y} (t) is a self-similar process of parameter h, indepen-
dent of € (meaning that (Y}, (at)) has the same distribution as
a"(Y,(t))). When taking Y}, as a fractional Brownian motion,
the first point is to construct a stochastic integral with respect
to fBm, and show that it is well defined and not diverging.
This was done in [20] for h > 1/2.

Abry et al. [19] further explored the case & > 1/2 using
fractional Wiener integrals. In such a situation, the process
generated is shown to be converging and different from that
previously produced. Let us note K(q) the scaling moment
function of €: at scale ¢ the moments of ¢, write

(€]) ~ K@ (7)

and 1 = K(2). The result of [19], with our notations, is the
following (for h > 1/2 only):

qh — K(q); p<2h—1

Cx((J):{ Bl K(g); 2h < pt1 ®)

where K (q) is the scaling exponent for the kernel function.
Let us define here the Hurst exponent H as:

H = (x(1) )
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Fig. 3. Different values of H = (x(1) obtained ina h —
plane. The region (1) corresponds to a region with unknown
value for H. The nonlinear (magenta) curve which is at the
bottom left corresponds to the condition K (1/2h) < 1/2h —
1. The analytical expression of the curved part depends on the
model.

When < 2h — 1, we have H = (x(1) = h, whereas for
2h < p+1, H=(x(1) = “7“ and is not related to h. Exam-
ples of moving average simulations of a multifractal process,
following Equation (6) with a lognormal multiplicative cas-
cade with ; = 0.2, and values of H = 0.3 and H = 0.5, are
shown in Figure 2.

The case h < 1/2 has only been considered, up to now,
in one paper. In the case h < 1/2, Perpete [21] has shown
that the process is well defined and, using a different method,

found the following scaling exponents:

(x(q) =5 — K(g) (10)
with the following conditions:

0<h<1/4 &K(5) <3 —1 (11
1/4<h<1/2

This result is surprising since there is no h dependence in the
value of {x(gq). We have here in both cases H = (x (1) =
1/2.

The different H values, obtained for all situations, are
shown in Figure 3 in a h — p plane. In the region (1), there
is no result for the moment. The other zones correspond to
different values of H, which is constant, or depends on p or
h.

2.2. The lognormal case

Continuous multifractal models are known to be log-ID (log-
infinitely divisible), meaning that the logarithm of the pro-
cess belongs to an ID law (Poisson, Gaussian, stable, etc.).
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The generic continuous multifractal model is the lognormal
model, which is often taken as illustration.
In the lognormal case, we have a quadratic expression:

K(q) = g(q2 —q) (12)

and the condition K (5-) < 5~ — 1 becomes p < f(h) with

B 2x(1 — 2x)
- 1—=z

f(x) 13)
Since 0 < h < 1and 0 < g < 1, we can plotin the h — p
plane the result in Figure 4, following the calculations of [19]
and [21], given in Equations (8) and (11).

There are four zones in this h — p quadrant: from left to
right, there is no result in the zone left blank; the nonlinear
curve is given by f(z); for the next region we have (x (¢) =
4 — K(q); then (x(q) = “31q — K(q) and finally Cx (q) =
qh — K(q).

2.3. Generalisation: moving average with the power a >
0 of a multiplicative cascade

There is a way to change the value of (x(g), by taking a
power a > 0 of the multifractal cascade in the stochastic in-
tegral:

t
X(t) = / € (u)dYp (u) (14)
0
The exponent (x (¢) is then modified, as follows [19,21]:

%—K(aq); 0<h<1/4&K(ﬁ)<ﬁ—l
37— K(ag); 1/A<h<1/2

_ 2
CX(Q)* qh_KQ(%a); 1/2<h&K2(2,a)§2h_1

g — Ks(g,a); 1/2 < h & 2h < K2(2,a) + 1

15)
where Ks(q,a) = K(aq) — ¢K(a). The introduction of this
parameter a thus gives a degree of freedom in the stochas-
tic simulations and helps to explore more possibilities in the
simulations.

Let us illustrate this for a lognormal process: in this case
we have K»(q,a) = a?K(q). The following quadratic form
of the scaling moment function ((q) is a generic expression
for a lognormal multifractal process:

!/
Cxla) = o = (@ ~0) (16)
This expression depends on 2 parameters: the first one is the
classical Hurst index defined as H = (x (1) and the second
one is the intermittency parameter defined here as i/ = 2H —
Cx(2).

Our question here is: is it possible to retrieve Eq.(16),
corresponding to a generic lognormal expression, through
a stochastic moving average of the form Eq.(14)? And if
yes, for which values of h, a and p (expressed using the
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desired parameters H and p)? This question is important
since the lognormal case is a classical multifractal process,
and stochastic simulations able to generate all the possible
parameters are useful for many applications. For example for
turbulent fields, H is close to 1/3 and p’ is often smaller than
0.1.

Two cases are considered below, to partly answer this
question.

2.3.1. Case H <1/2

We need to take h > 1/2; in this case the function write
¢x(q) = % — K(aq) and does not depend on h. This gives

the values: , ,

= 7M : 'LL = 'u—

2H — 1+ p'’ a?
where we need to have p/ > 1 — 2H. Thus all values are
not accessible: the smaller H, the more the process must be
intermittent (large u').

a A7)

2.3.2. Case H > 1/2

Considering a < 1, the previous case with h < 1/2 will
provide H = 1/2 — K(a) > 1/2. Hence Eq.(17) can still be
used.

Or by taking h > 1/2,if i/ < 2H —1wehave h = H. In

this case any a and y are possible with the condition a?y =
!

w.
Finally if ;' > 2H — 1, we have:

W
p=2H -1 a=\/gm— (18)

Thus in the case H > 1/2, the simulation is possible for all
couple of values of (H, u').

3. CONCLUSION

Multifractal random walks (or non stationary multi fractals, or
multi-affine fields) have been obtained for a long time in many
fields of applied and natural sciences. We have recalled here
how to analyse such time series and to extract the nonlinear
moment function {(q).

However, to generate such time series using continuous
models has long been a challenge. We have reviewed here
some recently obtained results, provided a new synthesis, and
considered the situation of a desired quadratic moment func-
tion, for the lognormal case taken as generic and classical ex-
ample of multifractal process.

Such quadratic expression is characterized by the param-
eters H and p' (Eq.(16)), and we have shown how to choose
the parameters h, a and p in the generating expression given
by Eq. (14), to retrieve this quadratic curve. Depending on the
values of H and p/, some values are still not accessible; for
example for small H and small p.
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Fig. 4. The plane h—p giving the value of the scaling exponent
Cx (q) for a lognormal process. For the zone which is left in
blank, there is no result for the moment. Increasing diagonal:

Cx(q

) = % — K(q); open dots: (x(q) = ”THQ — K(q) and

decreasing diagonals Cx (q) = gh — K(q).
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