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ABSTRACT
Learning the underlying low-dimensional subspace from
streaming incomplete high-dimensional observations data
has attracted considerable attention lately. In this paper, we
present a new computationally efficient Bayesian scheme for
online low-rank subspace learning and matrix completion.
The proposed scheme builds upon a properly defined hier-
archical Bayesian model that explicitly imposes low rank to
the latent subspace by assigning sparsity promoting Student-t
priors to the columns of the subspace matrix. The new al-
gorithm is fully automated and as corroborated by numerical
simulations, provides higher estimation accuracy and a better
estimate of the true subspace rank compared to state of the
art methods.

Index Terms— Online low-rank subspace learning, ma-
trix completion, variational Bayes, big data.

1. INTRODUCTION

Extraction of information from high-dimensional data has
been the subject of many applications in signal process-
ing and machine learning. However, despite their high-
dimensionality, frequently data are known to ‘live’ in low-
dimensional subspaces. Principal components analysis (PCA)
has been for many years the workhorse technique for dimen-
sionality reduction and low-rank linear subspace learning in a
static environment. Nevertheless, under dynamically chang-
ing conditions or when processing of streaming data is re-
quired, classical PCA becomes computationally prohibitive.
This problem has been traditionally solved using adaptive
singular value decomposition (SVD) based subspace tracking
techniques, e.g., [1].

Nowadays, with the advent of big data analytics, the need
to learn and track the low-rank subspace of high-dimensional
observations data in a computationally efficient manner, has
become both imperative and challenging. In addition to this,
for various reasons observations data may be only partially
known or purposely undersampled, rendering conventional
methods infeasible. In such cases, (online) subspace learning
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turns out to be commensurate to the so-called (online) low-
rank matrix completion problem. Very recently, online algo-
rithms have been developed, which have the ability to recur-
sively estimate the low-rank subspace where data reside, us-
ing only limited observations [2], [3], [4]. These, in essence,
are based on deterministic alternating optimization strategies,
each minimizing a suitably formed cost function.

In this work, we present a new sequential algorithm for
online subspace learning from partial observations, which,
unlike previous works, emerges from a Bayesian standpoint.
The proposed algorithm is derived by transforming an ap-
proximate Bayesian inference scheme, which originates from
an appropriate hierarchical Bayesian model defined on the
problem parameters. The main feature of the model is that it
explicitly enforces low rank to the data latent subspace via a
matrix column sparsity inducing mechanism, [5]. Compared
to state-of-the-art related techniques, the new online scheme
a) is fully automated as no parameter fine-tuning is required,
b) is of similar or lower computational complexity and c) as
verified by simulations, offers a lower average estimation er-
ror and a more accurate estimate of the true subspace rank.

Notation: Column vectors are represented as boldface
lowercase letters, e.g. x, and matrices as boldface uppercase
letters, e.g. X, while, unless otherwise explicitly stated, xi is
the ith element of x and xij the ijth element of X . Moreover,
(·)T denotes transposition, Ik is the k × k identity matrix,
‖ ·‖ is the standard `2-norm, ‖ ·‖F stands for the Frobenius
norm, � denotes Hadamard entrywise product, N (·) is the
Gaussian distribution, G(·) is the Gamma distribution, 〈·〉 is
the expectation operator, diag(x) denotes a diagonal matrix
whose diagonal entries are the elements of x, and Trace(X)
is the trace of the square matrix X.

2. PROBLEM STATEMENT

We assume that K × 1 vectors of streaming observations are
generated according to the linear regression model

y(n) = W(n)x(n) + e(n), (1)

where n is the time index. In (1), the columns of the K × L
matrix W(n) span a low-dimensional subspace (L � K),
the L × 1 vector x(n) is the representation of y(n) in this
subspace and e(n) ∼ N (e(n)|0, β−1IK), with β being the
noise presicion. Note that the true rank of W(n) is r < L

23rd European Signal Processing Conference (EUSIPCO)

978-0-9928626-3-3/15/$31.00 ©2015 IEEE 2571



and may be also time-varying. However, in order to facilitate
our analysis, we use in (1) an overestimate L of the true rank,
although one of our goals in this work is also the estimation of
the true rank of W(n). The subspace matrix W(n) is defined
in terms of its rows and columns as follows

W(n) = [w1(n),w2(n), . . . ,wK(n)]T

= [w1(n),w2(n), . . . ,wL(n)] . (2)

Note that wk(n) is the column vector containing the elements
of the kth row of W(n). By collecting observations up to time
n as rows in the n×K observations matrix Y(n), yields

Y(n) = [y(1),y(2), · · · ,y(n)]T = [y1(n), y2(n), . . . , yK(n)],
(3)

and additionally

X(n) = [x(1),x(2), · · · ,x(n)]T = [x 1(n), x 2(n), . . . , xL(n)].
(4)

In this work, we assume that only a part of the observa-
tions in Y(n) are available. To model missing data, we
define the time-increasing, binary n × K matrix Φ(n) =
[φ(1),φ(2), . . . , φ(n)]T = [ϕ1(n),ϕ2(n), . . . ,ϕK(n)],
having 1’s at the positions where data are known, and 0’s
elsewhere. Therefore, the matrix V(n) = Φ(n) � Y(n)
contains only the available observations. Given V(n), our
goal is to recursively estimate in time, a) the low-rank matrix
W(n) and b) the projection x(n) of the current observations
vector y(n) onto the column space of W(n). To achieve this
goal, we may exploit the following exponentially weighted
least squares (LS) cost function optimization problem,

{Ŵ(n), X̂(n)} =

argmin
W(n),X(n)

‖Φ(n)� [Λ1/2(n)(Y(n)−X(n)WT (n))]‖2F , (5)

where Λ(n) = diag([λn−1, λn−2, . . . , 1]T ) and λ is the usual
forgetting factor that places more importance to recent obser-
vations (0� λ < 1). Based on (5), a recursive LS type algo-
rithm has been developed in [3], that alternates between com-
puting the estimate x̂(n) and updating the subspace Ŵ(n).
Also in [4], an alternating ridge-regression type adaptive al-
gorithm is derived, after regularizing (5) with a Frobenius
norm upper bound of the low-rank promoting nuclear norm of
X(n)WT (n). In the current work a different approach is fol-
lowed stemming from a Bayesian perspective. More specifi-
cally, W(n) is enforced to be low-rank by using the column
sparsity inducing method proposed in [5] and explained in the
next section.

3. LOW-RANK BAYESIAN MODELING

In this and the next sections, we temporarily drop the depen-
dence of all quantities on the time index n and develop a batch
iterative scheme for low-rank subspace estimation. First, tak-
ing into account a) the data generation model (1), b) the statis-
tics of the noise and c) the exponentially weighted windowing

of the data, we get the following likelihood function for the
observations

p(Φ�Y | X,W, β) =
n∏

j=1

N (φ(j)� y(j) | φ(j)�Wx(j), λn−jβ−1Φ(j)), (6)

where Φ(j) = diag(φ(j)). Additionally, in order to impose
low-rankness, we first recall that

XWT =

L∑
l=1

x lw
T
l , (7)

with each outer-product of the respective columns of X and
W in the right hand side of (7) adding one to the rank of the
matrix XWT . Herein, we adopt the approach proposed in
[5], properly adjusted to our likelihood function. According
to [5], sparsity is imposed jointly to the columns of X and
W via appropriate hierarchical Bayesian modelling. More
specifically, at the first level of the hierarchy the following
Gaussian priors are assigned to the columns of X and W,

p(X | s, β) =
L∏

l=1

N (x l | 0, β−1s−1l Λ), (8)

p(W | s, β) =
L∏

l=1

N (w l | 0, β−1s−1l IK), (9)

where s = [s1, s2, . . . , sL]
T . Note that the lth columns of

X,W share a common sparsity promoting parameter sl, for
l = 1, 2, . . . , L. When performing Bayesian inference, some
of the sl’s will take very large values, thus annihilating the
corresponding columns of X and W and reducing the rank.
To this end, at the second level of the hierarchy these param-
eters are assumed to follow a conjugate Gamma distribution,

p(s) =

L∏
l=1

G(sl; ςl, δl). (10)

Similar to sparse Bayesian learning [6], by integrating out s
from (8) and (9) leads to heavy-tailed Student-t marginal pri-
ors for the columns of X and W, respectively. To complete
the Bayesian model, a conjugate Gamma distribution is as-
signed to the noise precision β,

p(β) = G(β;κ, θ). (11)

Based on the previously described Bayesian model, an effi-
cient approximate Bayesian inference method is derived in
the next section for low-rank subspace learning and matrix
completion.

4. BATCH VARIATIONAL BAYES INFERENCE

To perform Bayesian inference, we need the joint posterior
distribution p(X,W, s, β | Y), which, by applying the Bayes
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rule, is expressed as

p(X,W, s, β | Y) =
p(Y,X,W, s, β)∫

p(Y,X,W, s, β)dXdWdsdβ
. (12)

Unfortunately, due to the complexity of our Bayesian model,
p(X,W, s, β | Y) can not be computed in closed-form from
(12) and thus we have to properly approximate it. As in [5],
[7], we adopt the approximation method termed variational
Bayes (VB) inference. According to VB, p(X,W, s, β | Y)
is approximated by its closest distribution in the space of
factorized distributions with respect to the Kullback-Leibler
(KL) divergence criterion [7]. In this work we resort to the
following factorization,

q(X,W, s, β) = q(β)

n∏
j=1

q(x(j))

K∏
k=1

L∏
l=1

q(wkl)

L∏
l=1

q(sl). (13)

Note that in contrast to [5], the approximating distribution
q(X,W, s, β) is assumed to be fully factorized with respect
to the elements of W. This modification is important, as it
will pave the way for the development of a computationally
efficient online algorithm in the next section. Now, by min-
imizing the KL divergence between p(X,W, s, β | Y) and
q(X,W, s, β), the individual distribution factors q(·)’s in the
right hand side of (13) can be computed in closed-form [7].

Specifically, it turns out easily that the posterior distribu-
tion q(x(j)) of the given row x(j) of X is Gaussian,

q(x(j)) = N (x(j) | 〈x(j)〉,Σx(j)), (14)

with mean and covariance matrix

〈x(j)〉 = 〈β〉Σx(j)〈W〉T (φ(j)� y(j)) , (15)

Σx(j) = 〈β〉−1
(
〈WTΦ(j)W〉+ 〈S〉

)−1
. (16)

where S = diag(s). Moreover, 〈WTΦ(j)W〉 equals

〈WTΦ(j)W〉 = 〈WT 〉Φ(j)〈W〉+
K∑

k=1

φjkΣwk
(17)

with Σwk
the L× L covariance matrix of wk, which is diag-

onal due to the posterior independence assumed in (13).
Working as above, we find that q(wkl) is the following

Gaussian distribution

q(wkl) = N (wkl | 〈wkl〉, σ2
wkl

), (18)

where,

〈wkl〉 =〈β〉σ2
wkl

(
〈xT

l 〉ΛΦkyk − 〈x
T
l ΛΦkX¬l〉〈wk¬l〉

)
(19)

σ2
wkl

= 〈β〉−1
(
〈xT

l ΛΦkx l〉+ 〈sl〉
)−1

. (20)

In (19), X¬l and wk¬l result from X and wk after remov-
ing their lth column and lth entry, respectively and Φk =

diag(ϕk). In addition,

〈xT
l ΛΦkX¬l〉 = 〈xT

l 〉ΛΦk〈X¬l〉+
n∑

j=1

λn−jφjkσx(j)¬l
(21)

〈xT
l ΛΦkx l〉 = 〈xT

l 〉ΛΦk〈x l〉+
n∑

j=1

λn−jφjkσ
2
xjl

(22)

where σx(j)¬l
represents the lth column of Σx(j) after re-

moving its lth element σ2
xjl

. As far as the posterior of sl is
concerned, we get

q(sl) = G(sl | ς̂l, δ̂l) (23)

where, ς̂ = ςl + (K + n) /2 and δ̂ = δl +
(
〈β〉(〈xT

l Λx l〉 +

〈wT
l w l〉)

)
/2. The posterior mean of sl is thus given by,

〈sl〉 =
2ςl +K + n

2δl + 〈β〉
(
〈xT

l Λx l〉+ 〈wT
l w l〉

) , (24)

with 〈xT
l Λx l〉 = 〈xT

l 〉Λ〈x l〉+
∑n

j=1 λ
n−jσ2

xjl
and 〈wT

l w l〉
= 〈wT

l 〉〈w l〉 +
∑K

k=1 σ
2
wkl

. Likewise, the approximate pos-
terior distribution of β is a Gamma distribution i.e.,

q(β) = G(β | κ̂, θ̂) (25)

with θ̂ =
∑K

k=1

(
〈‖Λ

1
2Φk (yk −Xwk) ‖2〉 + 〈wk

TSwk〉
)

+
∑L

l=1〈sl〉〈xT
l Λx l〉 + 2θ, κ̂ = κ +

(
n(K + L) +KL

)
/2

and 〈β〉 = κ̂/θ̂, where

〈‖Λ
1
2Φk (yk −Xwk) ‖2〉 = ‖Λ

1
2Φk (yk − 〈X〉〈wk〉) ‖2

+Trace(〈X〉TΛΦk〈X〉Σwk ) + 〈w
T
k 〉

n∑
j=1

φjkλ
n−jΣx(j)〈wk〉

+Trace(Σwk

n∑
j=1

φjkλ
n−jΣx(j)) (26)

〈wT
k Swk〉 = 〈wT

k 〉〈S〉〈wk〉+
L∑

l=1

slσ
2
wkl

(27)

From the previous analysis, it can easily be seen that the
expectations of the model parameters 〈wkl〉, 〈x(j)〉, 〈sl〉 and
〈β〉 are mutually dependent. Thus, a cyclic VB iterative
scheme can be defined among them that provides an esti-
mate of the low-rank subspace matrix W in terms of 〈wkl〉
after convergence (which is theoretically established). Such
a scheme, however, cannot be used for online processing,
since, in such a case, the sizes of the involved matrices Y,X
increase with time. In the next section we show how this
batch iterative scheme can be properly transformed, so as to
be able to efficiently process streaming data.

5. ONLINE VB SUBSPACE ESTIMATION

In this section a new VB algorithm is derived for online sub-
space estimation and matrix completion. To this end, in the
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following we restore the time index n and for notational con-
venience the expectation operator 〈·〉 is omitted. In the online
scenario it is assumed that a stream of high-dimensional in-
complete data vectors y(n) is received and we process them
sequentially in order to estimate the low-rank subspace Ŵ(n)
where they reside, as well as their projection x̂(n) on it. First,
from (15) for j = n we get,

x̂(n) = β(n− 1)Σx̂(n)Ŵ
T (n− 1) (φ(n)� y(n)) , (28)

Σx̂(n) = β−1(n− 1)
(
ŴT (n− 1)Φ(n)Ŵ(n− 1)

+

K∑
k=1

φk(n)Σŵk
(n− 1) + S(n− 1)

)−1

. (29)

Additionally, we define the following fixed-size quantities
that implicitly appear in the formulas of the previous section,
for k = 1, 2, . . . ,K

Pk(n) = X̂T (n)Λ(n)Φk(n)X̂(n)+

n∑
j=1

φk(j)λ
n−jΣx̂(j), (30)

dk(n) = yT
k (n)Λ(n)Φk(n)yk(n), (31)

zk(n) = X̂T (n)Λ(n)Φk(n)yk(n), (32)

Q(n) = X̂T (n)Λ(n)X̂(n) +

n∑
j=1

λn−jΣx̂(j), (33)

Rk(n) = Pk(n) + S(n− 1). (34)

In the previous expressions and with a slight abuse in nota-
tion, we have replaced Σx̂(j) and φjk with Σx̂(j) and φk(j).
It should be further noted that Eqs. (30), (31), (32) and (33)
can be updated recursively as follows

Pk(n) = λPk(n− 1) + φk(n)
(
Σx̂(n) + x̂(n)x̂T (n)

)
, (35)

dk(n) = λdk(n− 1) + φk(n)y
2
k(n), (36)

zk(n) = λzk(n− 1) + φk(n)x̂(n)yk(n), (37)

Q(n) = λQ(n− 1) + Σx̂(n) + x̂(n)x̂T (n). (38)

These quantities can then be used to produce all remaining
parameter estimates of the algorithm. Starting with the esti-
mates of the entries of Ŵ(n), (19) and (20) yield

ŵkl(n) = β(n)σ2
ŵkl

(n)
(
zk,l(n)− rTk,¬l(n)ŵk¬l(n)

)
, (39)

σ2
ŵkl

(n) = β−1(n)r−1k,ll(n), (40)

where rk,ll(n) is the lth diagonal element of Rk(n), zk,l(n)
is the lth entry of zk(n), rTk,¬l(n) is the lth row of Rk(n) after
removing its lth element rk,ll(n) and

ŵk¬l(n) = [ŵk1(n), ŵk2(n), . . . , ŵkl−1(n),

ŵkl+1(n− 1), . . . , ŵkL(n− 1)]. (41)

From (39) and (41), it should be noticed that ŵkl(n) is updated based
on the most recent available estimates of the remaining elements of

Table 1. The OVBSL algorithm

Initialize: W(0),S(0),Σwk (0), k = 1, 2, . . . ,K
Set Rk(0) = 0,Pk(0) = 0, zk(0) = 0, dk(0) = 0, k = 1, 2, . . . ,K
Set Q(0) = 0, κ = 10−6, θ = 10−6, λ
Set ςl = 10−6, δl = 10−6, l = 1, 2, . . . , L
for n = 1, 2, . . .

1: Compute Σ̂x(n) from (29)
2: Compute x̂(n) from (28)

for k = 1, 2, . . . ,K
3: Update Pk(n) from (35)
4: Update dk(n) from (36)
5: Update zk(n) from (37)
6: Compute Rk(n) from (34)
for l = 1, 2, . . . , L
8: Compute σ2

wkl
(n) from (40)

9: Compute ŵkl(n) from (39)
end for

end for
7: Update Q(n) from (38)
for l = 1, 2, . . . , L
10: Compute sl(n) from (42)

end for
11: Compute β(n) from (43)

end for

ŵk(n) via a coordinate descent type rule. Next, from (24), the col-
umn sparsity promoting parameters sl’s are time updated as follows

sl(n) =
(
2ςl +

1

1− λ +K
)
/
(
2δl + β(n)

(
qll(n)

+ ŵT
l (n)ŵ l(n) +

K∑
k=1

σ2
ŵkl

(n)
))
,

(42)

where qll(n) is the lth diagonal element of Q(n) and n has
been replaced by the size of the effective time window(1 −
λ)−1, as in [7]. Finally, working as in [7], we can derive the
following adaptation formula that gives the posterior mean of
the noise precision β at time n,

β(n) =

(
2κ+

(
K + L

1− λ +KL

))
/
(
2θ +

K∑
k=1

(
dk(n)

− zT
k (n)ŵk(n) + σT

ŵk
(n)rk(n)

)
+

L∑
l=1

sl(n)qll(n)
)
,

(43)

where σŵk
(n) and rk(n) contain the diagonal elements of

Σŵk
(n) and Rk(n), respectively.

Based on the previous analysis, the new online variational
Bayes subspace learning (OVBSL) algorithm is summarized
in Table 1. The estimation of the covariance matrix Σx(n)
from (29), makes the computational complexity of OVBSL
O(|φ(n)|L2) (where |φ(n)| denotes the number of observed
entries at time n), which is similar to that of GROUSE and
PETRELS algorithms presented in [2] and [3], respectively,
and lower compared to that of Algorithm 1 of [4] which
is O(KL3). By fixing all hyperparameters κ, θ, ςl, δl to
very small values (as is commonly done in classical sparse
Bayesian learning [6]), the proposed algorithm turns out to
be fully automated and independent of any free parameters.
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6. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we evaluate the effectiveness of the proposed
OVBSL algorithm by conducting two experiments on sim-
ulated data. To this end, we produce low-dimensional sub-
space matrices Wtrue ∈ R400×r (hence K = 400) with
independent and identically distributed (i.i.d) N (0, 1

K ) en-
tries. Next, we generate 30000 projection coefficient vec-
tors, whose entries are Gaussian distributed, i.e., xtrue(n) ∼
N (xtrue(n) | 0, Ir). The observation vectors y(n) are gener-
ated according to (1), where the noise precision is set to β =
103 while the forgetting factor λ is set to 0.99. In our exper-
iments, the proposed OVBSL algorithm is compared to three
state-of-the-art schemes namely, GROUSE, [2], PETRELS,
[3] and Algorithm 1 of [4]. The step size of GROUSE as
well as the low-rankness parameter of Algorithm 1 of [4], are
set to 0.1. Let a(n) = Wtrue(n)xtrue(n). We consider
two metrics, namely, the running average estimation error
(RAEE), RAEE(n) = 1

n

∑n
j=1

‖â(j)−a(j)‖
‖a(j)‖ , where â(j) =

Ŵ(j)x̂(j), and the normalized subspace reconstruction er-
ror (NSRE), NSRE = ‖PŴ⊥(n)Wtrue(n)‖2F /‖Wtrue(n)‖2F ,
where PŴ⊥(n) is the projection operator onto the orthogonal

complement of Ŵ(n).
In the first experiment, we compare the robustness of the

considered algorithms for two different ratios π (percentage
of missing elements), namely π = {0.25, 0.75}. The true
rank r of Wtrue is set to 5. In all tested algorithms, an over-
estimate, L = 10, of the true rank r was used. Fig. 1 shows
the obtained RAEE curves for all four algorithms. It is easily
observed that the proposed algorithm outperforms its rivals,
for both ratio values. As shown in the figure, without the
knowledge of the true rank, GROUSE is trapped into local
minima, while PETRELS diverges for π = 0.75. In contrast,
OVBSL and Algorithm 1 of [4] present robustness and rela-
tively low RAEE values. Note that for π = 0.25 an abrupt
change is purposely induced in our model at n = 10000, by
fully updating the subspace matrix without changing its rank.
Although this change causes a sudden increase in the RAEE
of OVBSL and Algorithm 1 of [4], both algorithms are able
to track the subspace change in subsequent iterations.

The second experiment examines the ability of OVBSL
and Algorithm 1 of [4] in detecting the true rank of the sub-
space matrix Wtrue. In this regard, we fix π to 0.25, and
generate four Wtrue’s with ranks r = 6, 8, 10, 12. In both
tested algorithms, the rank of the subspace matrix is intial-
ized to L = 15. Table 2 shows the rank r̂ of Ŵ and the
NSRE provided by the two algorithms after 30000 iterations.
Interestingly, the proposed OVBSL algorithm detects the true
rank in all cases, in contrast to its competitor, which is shown
to end up always with an overestimate. As far the NSRE
is concerned, OVBSL scores better results in all examined
cases. Therefore, it seems that, besides its lower computa-
tional complexity, OVBSL also exhibits a better estimation
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GROUSE, π = 0.25
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Algorithm 1 of [4], π = 0.75
PETRELS, π = 0.75
GROUSE, π = 0.75

Fig. 1. RAEE of subspace tracking algorithms for π = 0.25 and π = 0.75.

Algorithm
r = 6 r = 8 r = 10 r = 12

r̂ NSRE r̂ NSRE r̂ NSRE r̂ NSRE
OVBSL 6 0.0843 8 0.0850 10 0.0893 12 0.0909
Algorithm 1 of [4] 15 0.0889 15 0.0900 15 0.0940 15 0.0943

Table 2. Estimated rank r̂ and NSRE of OVBSL and Algorithm 1 of [4].

performance. This is due to the fact that OVBSL entails a
sparsity promoting mechanism that explicitly imposes low-
rankness by zeroing whole columns of the subspace matrix.
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