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ABSTRACT
Wave Digital Structures (WDS) are particularly interesting
for applications of interactive modeling of nonlinear (NL) el-
ements in the context of Virtual Analog modeling. NL cir-
cuits, however, often include multiple nonlinearities or multi-
port nonlinearities, which cannot readily be accommodated
by traditional WDS. In this work we present a novel method
for modeling in the WD domain a class of multi-port NL el-
ements that are obtained as the interconnection of linear and
NL resistive bipoles. Our technique is based on a Piece-Wise
Linear approximation of the individual bipoles that constitute
the multi-port element. The method generalizes the existing
solutions that are available in the literature as it enables the
modeling of arbitrary interconnections between outer ports of
the nonlinearity and individual ports of the local NL bipoles.

Index Terms— Circuit simulation, physical modeling
sound synthesis, non linear signal processing, wave digital
filters

1. INTRODUCTION

Wave Digital Filters (WDFs) [1] were originally aimed at de-
signing digital filters that closely match the behaviour of ana-
log reference circuits. Their design is based on a port-wise
consideration of the reference circuit (one-port elements and
topological “adaptors”), a linear transformation of Kirchhoff
(K) variables (voltage and current) to pairs of waves (incident
and reflected), and discretization of reactive circuit elements
via the bilinear transform [2]. WDFs originally focused only
on linear circuits, but their use was later extended to nonlin-
ear circuit modeling. NL WDFs are particularly interesting
in the context of Sound Synthesis through physical model-
ing [3], and Virtual Analog processing [4]. Initial theoreti-
cal work focused on one-port nonlinearities with DC descrip-
tions [5, 6]; this was later expanded to consider nonlinearities
with memory [3, 7, 8]. For reasons of realizability, it is usu-
ally not possible to include more than a single NL Element

(NLE) in a WDF. In some special cases, techniques exist for
lumping multiple NLEs into a single one-port NLE [9]. In
other cases, known properties of the NLE can be used to pro-
duce approximations to multi-port NLEs with a single port
and cross-control [4, 10] or solution schemes that are cus-
tomized to a particular NLE [11]. There are only a few gen-
eral approaches to accommodate multi-port NLEs or multiple
NLEs. Recent work by Schwertdfeger and Kummert lever-
ages contractivity properties of WDFs to solve the realizabil-
ity problem through iteration (framed as an extension of time
to an extra dimension) [12]. Earlier work by Petrausch and
Rabenstein focused on a vector treatment of multiple single-
port NL bipoles using multi-port WDFs [13]. In this work
we focus on a class of multi-port NLEs, which is defined as
an arbitrary interconnection of NL resistive bipoles. The port
variables of such multi-port elements, therefore, are functions
of the port variables of the local NL bipoles. This class of
multi-port elements, in fact, is more general than those im-
plemented in the literature using Piece-Wise Linear (PWL)
approaches [13], and it enables the emulation of a wider fam-
ily of NL circuits in the WD domain. Section 2 describes the
necessary properties a generic multi-port NLE should have in
order to obtain explicit wave scattering relations for each of
its ports. In Section 3 we present the new class of multi-port
PWL models and two significant parameterization strategies,
which can be applied to such models in order to fulfill the
mentioned properties of “explicitability”. Section 4 describes
two applications of PWL models. Section 5 concludes this
paper.

2. MULTI-PORT NL WDFS

The transformation that maps K port variables onto WD port
variables for a generic N -port element can always be written
in matrix form [14] as[

a
b

]
=

[
E R
E −R

] [
V
I

]
, (1)
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where V = [V1, V2, ..., VN ]T is the vector of across K port
variables; I = [I1, I2, ..., IN ]T is the vector of through K port
variables; a = [a1, a2, ..., aN ]T and b = [b1, b2, ..., bN ]T are
the vectors of incident and reflected waves, respectively; R =
diag [R01, R01, ...R0N ] is the diagonal port resistance matrix;
and E is the (N ×N) identity matrix.

An explicit description based on waves for an N -port
NLE can be readily obtained if we can find an appropriate
parametric representation of the NL wave mappings. This
was already discussed for the case of one-port NL bipoles
without memory [5] and with memory [7]. Petrausch and
Rabenstein presented a vector generalization of this param-
eterization in [13], which can be used for accommodating
multiple NL bipoles in a WDF structure. That formulation
employs a parameter vector α whose dimension matches the
number of ports N of the NLE. In this paper we adopt a simi-
lar parameterization, whose vector α = [α1, α2, ..., αG] is as-
sumed to have G independent variables, where 1 ≤ G ≤ N .
This allows us to express V or I or both of them as functions
of α, V = fV (α), I = fI(α), and then to express also a
and b as functions of α, a = fa(α), b = fb(α). In order
to obtain explicit scattering relations in the WD domain, fa
must be invertible, which allows us to write

b = b (a) = fb
(
f−1
a (a)

)
. (2)

In [13] the NL characteristics of the bipoles are sampled and
turned into monotonic and continuous PWL characteristics.
The coordinates of the sampled points, however, are exactly
the variables V and I, needed to determine a and b through
(1). In the following section we will show how to generalize
that approach, addressing NLEs where port variables may be
functions of the other port variables and they are not necessar-
ily the coordinates of the characteristics of the interconnected
NL bipoles.

3. PWL MODELS

In this paper we consider PWL functions relating across and
through variables (voltage v and current i) in NL bipoles.
Such functions—which are assumed as being monotonic,
continuous, and passing through the origin—are called PWL
resistances as they consist of adjacent line segments sharing
end-points. Fig.1, for example, shows the characteristic of a
PWL resistance approximating a diode. We express a generic
PWL resistance in the form

v = λ (i) i+ q (i) , (3)

where λ(i) and q(i) are the current-controlled slope and v-
intercept of the corresponding line segment. Because of the
PWL nature of the characteristics, we can write λ(i) = λk if
ik ≤ i < ik+1, k being an index ranging between the integers
K− and K+ (−K− ≤ k < K+). We assume that λk is the
slope of the k-th segment joining Pk = [ik, vk] and Pk+1 =
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Fig. 1. A PWL resistance approximating a Shockley diode
model

[ik+1, vk+1]. The end point P0 = [i0, v0] is conventionally
picked as the origin of the axes. The total number of line
segments is therefore K = K− +K+.

We have defined a current-controlled PWL resistance, but
as we are dealing with monotonic characteristics, we could
have just as easily expressed i as a PWL function of v.

There is a wide range of N -port NLEs that are made of
M ≥ 1 NL bipoles (e.g. diodes) interconnected with each
other and with other linear components. In this work we fo-
cus on instantaneous (resistive) NLEs of the sort. We present
models of such multi-port NLEs, which approximate the M
NL characteristics of the NL bipoles with PWL resistances.
We call such models PWL models. A PWL model permits
instantaneous description of the N -port NLE using a linear
system of equations. The total number of such linear sys-
tems is equal to the number of possible combinations of line
segments (CMBs), considering all the PWL resistances of the
NLE. LettingKm be the number of line segments of them-th
PWL resistance, with 1 ≤ m ≤M , we can compute the total
number of CMBs as

∏M
m=1Km.

A combination of points Pm (one per PWL resistance),
represented by the vector i = [i1, i2, ..., iM ]T or v =
[v1, v2, ..., vM ]T , can be projected to a point I of the vec-
tor space of port currents, or in a point V of the vector space
of port voltages. The projection can be performed using
the most convenient (least complex) of the following four
geometric transformations

I = H1i + H01 I = H2v + H02

V = H3v + H03 V = H4i + H04
(4)

where the entries of the (N ×M) matrices H1, H2, H3, H4

are scalar functions of the M slopes λm (im), with 1 ≤ m ≤
M , while H01, H02, H03, H04 are scalar vector functions
of the slopes and the intercepts qm (im). When applying the
transformation (4), we should remember that slopes and in-
tercepts have piece-wise fixed values. In particular, they are
the parameters of the segments of the PWL resistances.

Through linear systems of equations we can derive ex-
plicit vector expressions relating the vector variables a and
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b. As mentioned in section II explicit one-to-one wave
mappings are granted only if a proper α-parameterization is
performed and (2) holds. The choice of the most suitable
parameterization is done according to which of the four (4)
transformations had been applied and checking the K port
variables dependences. Hereafter we propose two possible
parameterizations, which can be generally applied. The two
parameterizations are performed using two different, though
analogous, procedures.
The first procedure consists in considering the system of
equations in the K domain describing the NLE of interest
and substituting each port current In (1 ≤ n ≤ N ) with the
following expression derived from (1)

In =
an − Vn
R0n

. (5)

Solved the new resulting system of linear equations having
port voltages as unknowns, we can write the following affine
transformation in matrix form

V = FVa + F0V , (6)

where the entries of the square matrix FV, fjn, with j, n ∈
[1, N ] ⊆ N, are scalar functions of the M slopes λm (im),
while the elements of the vector F0V, f0n, are scalar func-
tions of the slopes and the M intercepts functions qm (im).
Obviously each fjn depends also on the port reference resis-
tances R0n. The maximum number G of independent vari-
ables of V may be the proper size of the vector parameter α.
Setting V = αV with αV = [α, VG+1, VG+2, ..., VN ]T , we
can write

αV = FVa + F0V . (7)

Naming fa(α)−1 the function (7), we can find an explicit in-
verse function a = fa(α), starting from the expression

FVa = αV − F0V , (8)

only if the matrix FV is invertible (full rank); otherwise we
have to search the set of incident wave vectors a satisfying
(8). As the entries of FV change at each time step, we have
to check which relations exist among the entries of different
rows and, if possible, we set the necessary algebraic con-
straints on the slopes in order to guarantee that the matrix
will always be full rank. Then substituting V = αV in the
following matrix relation, derived from (1),

b = 2V − a , (9)

we obtain an explicit wave mapping in the form (2)

b = (2FV −E)a + 2F0V . (10)

The second parameterization is performed similarly. Firstly,
we substitute each port voltage Vn in the system of equations
in the K domain with the expression

Vn = an −R0nIn . (11)
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Fig. 2. Transformer-less ring modulator (a) and its WD imple-
mentation (b).

Solved the resulting system of linear equations having port
currents as unknowns and set I = αI with
αI = [α, IG+1, IG+2, ..., IN ]T , we can write

αI = FIa + F0I , (12)

where the entries of FI are again functions of the slopes and
the entries of the vector F0I are functions of the slopes and
the intercepts. Naming fa(α)−1 the function (12), we can
find an explicit inverse function a = fa(α), starting from the
expression

FIa = αI − F0I , (13)

only if the matrix FI is full rank. Substituting I = αI in the
following matrix relation, derived from (1),

b = a− 2RI , (14)

we obtain an explicit wave mapping in the form (2)

b = (E− 2RFI)a− 2RF0I . (15)

Using one of the two parameterizations described so far, we
are able to map the sampled points of the line segments proper
of a specific CMB in points belonging to defined regions of
the incident waves vector space. We can accurately perform
this mapping for all the CMBs only once and save the results
in an ordered data structure. So, during a real time simulation,
at each time step, we only need to perform a search algorithm
in order to find the CMB corresponding to the instantaneous
vector of incident waves. Then, identified the right CMB,
we set the correct values of the slope functions λm and the
intercepts qm. Finally we are able to compute the reflected
waves using (10) or (15).

4. EXAMPLES OF APPLICATIONS

In this section we present two examples of applications of
PWL models. The first example is an implementation of a
transformer-less ring modulator, whose model in Fig.2a was
already proposed by Parker in [15]. Vin and Vc are the modu-
lator and the carrier signals, respectively. In his paper, Parker
performs a further simplification involving the elimination
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of non-conducting diodes at each time instant, while in our
model the four diodes are always present. We implement
the NLE using four ports, N = 4, as shown in Fig.2b. The
port voltages are potentials at the four terminals, A, B, C
and D. The port currents exit through the four terminals,
directed towards ground. We name the four ports according
to the corresponding terminals, so we write the port variables
as V = [VA, VB , VC , VD]T and I = [IA, IB , IC , ID]T . Our
definition of ports, exploiting ground as external reference
potential, is analogous to the one made in [11], where a WD
implementation of a 3-port triode is presented. As pointed
out in [11], when all the ports have a common external prong,
e.g. ground, since the incoming waves seen by the NLE are
the outgoing waves from the subcircuits connected to it and
vice versa, we need to “exchange the roles” of a and b in
(1). The four identical diodes are approximated with M = 4
identical PWL resistances as the one shown in Fig.1. The
real diode reference characteristic is described by the known
Shockley model with saturation current Is = 10−12 amps,
thermal voltage Vt = 25.85 mV and ideality factor η = 2.19.
We write the i–v characteristic of the diode among termi-
nals A and B as vAB = λAB(iAB)iAB + qAB(iAB). The
same holds for the other three diodes. The slopes and end
point coordinates of the approximating PWL characteristic
are: λ−1 = 2.585 × 1011, P0 = (0, 0), λ0 = 2.585 × 1010,
P1 = (2×10−12, 0.0517), λ1 = 9.232×10−8. It follows that,
since each PWL characteristic has Km = 3 line segments,
with 1 ≤ m ≤M , the total number of possible CMBs will be∏M
m=1Km = 81. A generic vector of M current values, one

for each PWL resistance, i = [iAB , iBD, iCA, iDC ]T , can be
projected into the port currents vector space using the simple
transformation

I =


−1 0 1 0
1 −1 0 0
0 0 −1 1
0 1 0 −1

 i . (16)

The relationship between I and V is described by the follow-
ing system of equations where the arguments of the slope and
intercept functions are omitted for the sake of readability

IA = VA

(
−1
λCA
− 1

λAB

)
+ VB

λAB
+ VC

λCA
− qCA

λCA
+ qAB

λAB

IB = VA

λAB
+ VB

(
−1
λAB
− 1

λBD

)
+ VD

λBD
− qAB

λAB
+ qBD

λBD

IC = VA

λCA
+ VC

(
−1
λBD
− 1

λDC

)
+ VD

λDC
− qDC

λDC
+ qCA

λCA

IA + IB + IC + ID = 0 .
(17)

We apply the second parameterization procedure described in
section 3 to the system of equation (17). Since the roles of a
and b are exchanged, the substitution (11) becomes

Vn = an +R0nIn . (18)

Then we obtain a vector parameter satisfying equation (12)
and we derive the mapping between the possible CMBs and

the corresponding regions of incident waves vector space, us-
ing expression (13). Finally we find an explicit scattering
wave relation in the form (15) with two changes of sign due
to the inversion of waves roles

b = (E + 2RFI)a + 2RF0I . (19)

We perform a simulation to test our WD implementation,
using sinusoidal input signals; Vin(t) = gin(sin(2π f0in

Fs
t))

and Vc(t) = gc(sin(2π f0c
Fs
t)), with gin = 1 V, f0in = 500

Hz and Fs = 96 kHz. The other circuit parameters are Rin =
80 Ω, gc = 1 V, f0c = 1500 Hz and Rout = 104 Ω.
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Fig. 3. Ring modulator: WD and SPICE simulations

The second proposed example of application is the imple-
mentation of a BJT amplifier in the simple common collector
configuration represented in Fig.4, often also called “emit-
ter follower”. Setting Vbias = 0 V, only the positive part
of the input signal Vin is “well-biased”, while the negative
part is flattened, hence the common collector amplifier can be
used as an half wave rectifier. In this simulation we model the
BJT using the classical Ebers Moll Model (EMM) introduced
in [16]. The EMM characteristic equations are: IE = iBE − αriBC

IC = iBC − αf iBE
IE + IB + IC = 0 ,

(20)

where IE , IC and IB are the currents at the emitter, the col-
lector and the base respectively, while iBE and iBC are the
currents passing through the 2 diodes of the EMM, described
using the Shockley model with η = 1, Is = 10−12 amps and
Vt = 25.85 mV. We set the forward and reverse short circuit
current gains to αf = 0.89 and αr = 0.8 respectively. We
approximate the 2 diodes with M = 2 identical PWL resis-
tances (e.g. VB − VE = λBEiBE + qBE), characterized by

B
C
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Vin Vbias

Rout

IE

IC

Vg

Rg

B
C

E
IB

Rin

Vin Vbias

Rout

IE

IC
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Fig. 4. Common collector BJT amplifier

23rd European Signal Processing Conference (EUSIPCO)

672



Km = 2 line segments each, having P0 as common end point;
the total number of possible CMBs will be

∏M
m=1Km = 4.

The parameters of the PWL resistances are λ−1 = 10−6 and
λ0 = 5×108. We model the BJT as a 3-port NLE,N = 3; the
corresponding port currents vector is I = [IE , IC , IB ]T and
the port voltage vector is V = [VE , VC , VB ]T . Also in this
case the roles of a and b are exchanged, since the N ports
have ground as common terminal. The matrix transformation
between the vector of local currents, i = [iBE , iBC ]T , and I
is:

I =

 1 −αr
−αf 1

(αf − 1) (αr − 1)

 i . (21)

In order to find an explicit wave mapping the second parame-
terization described in section 3 is applied. For the simulation
we use a sinusoidal input signal Vin(t) = gin(sin(2π f0in

Fs
t))

with gin = 1.5 V, f0in = 200 Hz and Fs = 44 KHz. The
other circuit parameters are: Rin = 1 Ω, Vbias = 2 V, Vg =
15 V, Rg = 2 Ω and Rout = 5000 Ω. Fig.3 and Fig.5 show
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Fig. 5. BJT amplifier: WD and SPICE simulations

the comparisons between the output signals obtained using
SPICE and the WD PWL models. The mismatches we notice
are justified by the fact we are approximating each diode char-
acteristic with only 3 line segments in the first case and 2 in
the second case. However the PWL models grasp accurately
the real circuits behavior.

5. CONCLUSIONS AND FUTURE RESEARCH

In this paper we have presented a new class of explicit PWL
WD models of multi-port NLEs containing an arbitrary num-
ber of NL bipoles, forming any topological structure. The
proposed models allow to accommodate multi-port NLEs,
where each port variable is a NL function of all others ports’
variables. In the future we aim to extend the presented ap-
proach to PWL resistances with more than two terminals and
to NLEs with memory. Moreover we will search effective
techniques to implement PWL resistances characterized by
more line segments.
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