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ABSTRACT

In a compressive sensing context, we propose a solution for
a full learning of the dictionary composed of the sparsity ba-
sis and the measurement matrix. The sparsity basis learning
process is achieved using Empirical Mode Decomposition
(EMD) and Hilbert transformation. EMD being a data-driven
decomposition method, the resulting sparsity basis shows
high sparsifying capacities. On the other hand, a gradient
method is applied for the design of the measurement ma-
trix. The method integrates the dictionary normalization into
the target function. It is shown to support large scale prob-
lems and to have a good convergence and high performance.
The evaluation of the whole approach is done on a set of
environmental sounds, and is based on a couple of key cri-
teria: sparsity degree and incoherence. Experimental results
demonstrate that our approach achieves well with regards to
mutual coherence reduction and signal reconstruction at low
sparsity degrees.

Index Terms— Compressive Sensing, EMD, Environ-
mental Sounds, Sparsity, Measurement Matrix, Incoherence

1. INTRODUCTION

Compressive sensing (CS) is a quite recent paradigm applied
for signal and image processing. It jointly acquires and com-
presses signals without going through intermediate process-
ing stages as in the traditional acquisition systems. This con-
cept is made possible given that most signals are compressible
or sparse in some convenient basis. Formally, consider x ∈
RN . x is said to be sparse if there exists a basis Ψ ∈ RN×K

in which it is expressed as x = Ψs with s having at most
P � N non zeros elements. Ψ is called the sparsity basis.
Now, consider x as the signal to be acquired in a wireless sen-
sor network (WSN) transmission for tele-monitoring context.
From an energy perspective, it is recommended to reduce op-
erations complexity at each sensor node so as to prolong its
lifetime. The classical sampling methods would require N

samples of x and a compression stage afterwards. Compres-
sive sensing, however, suggests to acquire only M < N sam-
ples given by the linear multiplication of x by a measurement
matrix Φ ∈ RM×N . Let y = ΦΨs = Ds be the measure-
ment vector. x can be reconstructed from y by running opti-
misation algorithms [1]. Applying a successful CS scenario
for signals consists therefore in two major tasks : designing
”good” matrices both for sparsity and measurements, and de-
signing a robust algorithm to recover s from y .
Problem formulation
As far as this work is concerned, we focus on the learning
of a sparsity matrix and a measurement matrix responding to
a couple of key notions: sparsity and incoherence. The first
notion is related to Ψ. Ψ is said to be a convenient matrix
if signal recovery can be achieved from a sparse form s hav-
ing a low sparsity degree P . The second notion, incoherence,
stands for the relation between Φ and Ψ and measures how
uncorrelated Φ and Ψ are. When both matrices are incoher-
ent, there is an overwhelming probability to achieve a good
signal recovery. In this study, we propose an approach for
designing a sparsity matrix with high sparsity capacities and
a measurement matrix incoherent to it. Both are ensuring a
good signal reconstruction.
State of the art
It has been established that learning adaptive basis from a set
of training signals yields better results than using a predefined
basis. Many Dictionary learning algorithms were therefore
implemented such as MOD [2], KSVD [3], GAD [4], etc. In
a previous work [5], we proposed a new learning approach
based on EMD and Hilbert transformation. Once the sparsity
basis Ψ is known, one particular rule should be respected to
define a measurement matrix Φ : both matrices, Φ and Ψ
must be incoherent. The majority of works made the assump-
tion that Φ is drawn from a gaussian distribution of variance
1/M . Yet, learning a projection matrix can indeed reduce the
mutual coherence and the reconstruction error as well. This
was proved in [6–10]. [6] used a technique of shrinkage to
optimize a so-called ”t-averaged mutual coherence”. [7] in-
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Fig. 1. Reconstruction error averaged over 300 test
signals while using matrices resulting from AEMD,
KSVD and MOD. Sparsity degree stands for the ratio
= number of non null elements

signal size . For higher sparsity degrees,
refer to [5].

troduces a framework for simultaneously designing Φ and Ψ
and applies SVD decomposition to solve the corresponding
problem. [8] suggests to deal with a constrained problem and
solve it using the method of alternating projections. [9] sug-
gests to design an equiangular tight frame and uses QR factor-
ization to define Φ. In [10], Abolghasemi et al. use the gradi-
ent descent method for learning the measurement matrix. At
each iteration, they proceed to the normalization of the dictio-
nary atoms first.then, they apply the gradient descent update.
Their approach is interesting in terms of low complexity. Yet,
its convergence is problematic and its performance can be en-
hanced. In this paper, we propose an EMD-based sparsity
matrix learning, followed by a gradient-based measurement
matrix learning method which integrates the dictionary nor-
malization operation. The first part focuses on achieving a
good sparsity on a set of environmental sounds. While the
second part attempts to reduce the mutual coherence. The
remainder of this paper is organised as follows: Section 2
reminds EMD principle and describes our method for spar-
sity matrix learning. In section 3, we formally address the
problem of incoherence and describe our method for learn-
ing Φ. Section 4 displays the results of simulations. Finally,
we come up with a conclusion to sum up the main ideas and
results.

2. SPARSITY MATRIX LEARNING

The success of compressive sensing relies, in part, on the de-
sign of the sparsity matrix which should fit the structure of
the signals. In [5], we used EMD to learn an over-complete
sparsity matrix in a non-iterative way.

2.1. Empirical mode decomposition

EMD is an adaptive decomposition proposed by N. E. Huang
in 1998 [11]. It states that a signal x can be written as a sum
of some components called intrinsic mode functions (IMF)
and a trend (T) as follows

x = (
∑
i≤m

IMF i) + T (1)

Each IMF is a simple oscillatory mode in a frequency limited-
band (see [11] for details about the sifting process). Theoreti-
cally, IMFs of a given signal are mutually orthogonal. Yet, in
practice, they are often close to be orthogonal. In particular,
when the signal is narrow-band, orthogonality is not reached.

2.2. Analytic EMD for sparsity matrix learning

We denote AEMD (Analytic Empirical Mode Decompo-
sition) the process explained in algorithm 1. Provided a
learning set, we apply EMD for each signal. The IMFs to be
kept are selected according to their relevance to the signal.
We measure the relevance of each IMF by introducing the
Signal-to-IMF-Ratio [5] and we find out that the first three
IMFs are the most important, the rest can be considered as
trend. Next, we apply Hilbert transformation to transform
the IMFs into analytic form before proceeding to a clus-
tering phase using K-means algorithm. Here, we slightly
modify the algorithm proposed in [5] so as to reduce the
dictionary size and the mutual coherence between Φ and Ψ
as well. In fact, the trend resulting from the signals decom-
position is no more included in the learning process. We
find out experimentally that the mutual coherence is more
probably to get reduced when sparsity matrix does not con-
tain clusters of trend signals. We show in Fig.1 that our
method outperforms algorithms used in [3] and [2]. We fo-
cus on low sparsity degrees, as recommended in CS context.

Algorithm 1: AEMD
Input: Learning data set {xi}Li=1

Initialization: Ψj
Re ← [ ];Ψj

An ← [ ]; 1 ≤ j ≤ 3
for i = 1 to L
[IMF 1

i , IMF 2
i , IMF 3

i ,T i]← EMD(xi)
for j = 1 to 3

Ψj
Re ← [Ψj

Re | IMF j
i ] # IMFs extracted at a level j

are stacked along the atoms of Ψj
Re

end for
end for
for j = 1 to 3

Ψj
An ← [HT (Ψj

Re)] #Hilbert Transformation of the
atoms of each sub−dictionary
{Ψj} ← k−means(Ψj

An, C
j)# create Cj clusters at

each level
end for
Ψ = [Ψ1,Ψ2,Ψ3]
Normalize Ψ in columnwise sense
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3. MEASUREMENTI MATRIX LEARNING

Incoherence (µ) has a major influence on the theoretical per-
formance of signals’ reconstruction. Commonly, the incoher-
ence is mathematically formulated as

µmax = max
1≤i,j≤K,i6=j

| Gi,j |= max
1≤i,j≤K,i6=j

| d̃
H

i d̃j | (2)

where d̃i denotes the ith column of D scaled to unity (in l2
norm sense), G is the gram matrix and .H is the transpose
conjugate. Note that 0 < µ ≤ 1. Two matrices are inco-
herent if µ approaches 0 .Yet, considering only the maximum
value as an optimization criteria may not be relevant enough.
Consider the case in which the gram matrix has one singular
off-diagonal value which is close to 1 while all the other off-
diagonal components are very close to zero. According to the
definition of µmax, the mutual coherence will be judged as
unsatisfactory and the two matrices as coherent. In order to
mitigate this situation, [10] consider the averaged incoherence
defined as

µavg =

∑
1≤i,j≤K,i6=j

| d̃
H

i d̃j |

K(K − 1)
(3)

So far, we will mainly focus on the µavg values in evaluating
the performance of our method.

3.1. Gradient approach

Let D̃ denote the column-normalized version of D. To
achieve incoherence having Ψ furnished by AEMD, we are
looking to find Φ such that for D = ΦΨ, we have

D̃
H
D̃ ' IK×K (4)

It is easy to see that

D̃ = ΦΨ̃ = ΦΨS (5)

where S = diag( 1
‖ΦΨ1‖2

, 1
‖ΦΨ2‖2

, ..., 1
‖ΦΨK‖2

).

Ψi is the ith column of Ψ. S is well defined because
∀i, ‖ΦΨi‖2 6= 0.
Equation (4) becomes

SHΨHΦHΦΨS ' IK×K (6)

S is hermitian and invertible. By multiplying both sides by
S−1 we get

ΨHΦHΦΨ ' (S−1)2 (7)

7can then be solved through the Least square (LS) minimiza-
tion problem

Φ̂ = min
Φ

J(Φ) =
∥∥∥ΨHΦHΦΨ− (S−1)2

∥∥∥2
F

(8)

We use the Frobenius norm ‖.‖F to get a differentiable cost
function. Moreover the choice of this norm is convenient for

our optimization problem. In fact, ‖.‖F optimizes the entries
square which is stronger than optimising the absolute value as
suggested by (3). To solve (8), we choose to apply the gradi-
ent descent algorithm which is an iterative method aiming at
finding the nearest local minimum of a function starting at an
initial point Φ0 and moving from Φi to Φi+1 in the opposite
direction of the gradient. Let’s start by defining the derivative
of the cost function

J(Φ) = Tr(ΨHΦHΦΨ−(S−1)2)(ΨHΦHΦΨ−(S−1)2)H

(9)
Without going into calculation details, we can show that the
gradient is

∇J = 4ΦΨ(ΨHΦHΦΨ− (S−1)2)ΨH (10)

Φ is updated then at each iteration as follows

Φi+1 = Φi − δ ∇J(Φi) (11)

where δ is the stepsize. The gradient descent algorithm is also
sensitive to the choice of the step. A small step value makes
the convergence slower while a big stepsize may cause the
algorithm to diverge.

4. EXPERIMENTS AND RESULTS

In all experiments, we compare our method to that of [10],
which was shown to outperform the method in [6]. We label
the approach in [10] by ”2-stage gradient method” in con-
trast with ours which is ”1-stage gradient method”. In fact,
at each iteration, [10] gets the dictionary normalized before
updating the Φ. In our contribution, and as we claim before,
we integrate the normalization factor into the cost function
via the matrix S in (6). So far, the experiments are carried
out on short-duration, also called environmental or impul-
sive, sounds related to tele−monitoring context. Some are
expressing emergency situations (screams, glass breaking),
while the others are usual sounds (cat mewing, door slam-
ming,...). They are issued from various sound libraries avail-
able on the net. The sampling frequency is 11 025 Hz and
all signals are mono-channel. The learning set contains 800
patterns ofN = 256 coefficients length each. In fact, to main-
tain a fixed length for all patterns, we split audio signals into
frames of the same length (256 samples). The sparsity matrix
is composed of K = 750 atoms and is learned as explained
in algorithm 1. We take M = 120. In order to observe the
cost function variation for both methods, many experiments
have been conducted while varying step sizes. Afterwards,
we select the step size giving the best convergence properties
for each method: 4.10−6 for the 2-stage gradient method and
4.10−5 for ours. Fig.2 shows the cost function variation for
different initialisations (IM×N is the identity matrix of size
M × N , U[0,1] is the uniformly distributed entries matrix,
N (0, 1

M ) is an i.i.d distributed matrix with variance 1
M , Al1
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Fig. 2. Convergence of our method (continuous line) versus
the 2-step gradient method (dotted line) for different initial-
isation matrices Φ0 and Ψ EMD-learned matrix. (a)Φ0 =
IM×N , (b)Φ0 ∼ U[0,1], (c)Φ0 ∼ N (0, 1

M ), (d)Φ0 = Al1

Φ0 IM×N U[0,1] N (0, 1
M
) Al1

Initial values 0.51 0.41 0.46 0.41
Proposed approach 0.11 0.10 0.09 0.08
2-stage gradient 0.11 0.25 0.10 0.09

Table 1. µavg values returned by both algorithms for different
initialisations.

is a matrix containing only 1 valued entry per line in a random
way, the remaining components are all set to 0). Note that at
each iteration, there is 120 × 256 = 30720 components to
update, which is a large scale problem. Our method clearly
performs better. It has shorter time of convergence and higher
minimization capacity. It can also be seen through the same
figure that initialisation has a great impact on the result of the
gradient algorithm.

Our objective was to reduce the coherence between both
matrices Φ and Ψ so as to enhance signal reconstruction.
Let us examine the incoherence measure achieved by both
algorithms, for different initialisation matrices Φ0. Table 1
and Table 2 display incoherence values as defined in (2) and
(3). Initial values show the incoherence measured before op-
timization of Φ. Our sparsity matrix has clearly high mu-
tual coherence with all sorts of initial measurement matrices.
Note that our algorithm performs better than the 2-stage gra-
dient method in most cases especially when considering µavg .
Note also that our approach is particularly efficient when deal-
ing with Φ0 drawn according to U[0,1].

Now, we propose to take the Φ returned by each algo-
rithm, with different initialisations, to perform reconstruction
of 300 test signals belonging to the same manifold of the
learning set. Let us first examine the distribution of the off-
diagonal elements of the Gram matrix. Fig.3 shows the dis-

(a)

(b) (c)

Fig. 3. The histogram of off-diagonal elements of the gram
matrix for (a)the initial Φ0 ∼ U[0,1], (b)Φ returned by our
algorithm and (c)Φ returned by 2-step gradient algorithm. Ψ
is the same in all cases (AEMD matrix)

Fig. 4. Reconstruction error averaged over 300 test signals.
In each experiment, the Φ used is learned from a different
initialisation. (a)Φ0 = IM×N , (b)Φ0 ∼ U[0,1], (c)Φ0 ∼
N (0, 1

M ), (d)Φ0 = Al1
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Φ0 IM×N U[0,1] N (0, 1
M
) Al1

Initial values 1 1 1 1
Proposed approach 0.81 0.80 0.65 0.64
2-stage gradient 0.81 0.98 0.65 0.63

Table 2. µmax values returned by both algorithms for different
initialisations.

tribution of Φ components obtained from Φ0 ∼ U[0,1]. As it
can be seen, our method makes the distribution closer to 0.
x̂ being the reconstructed signal, we define the reconstruc-
tion error as ε = ‖x−x̂‖

‖x‖ . Fig.4 shows the reconstruction er-
ror achieved with OMP algorithm [12], using different Φ0

while varying sparsity degree. The reconstruction is made
over 300 test signals. In Fig.4 we display reconstruction er-
ror average value over the test set. In all cases, the proposed
method achieves reduced reconstruction error compared to
the 2-stage gradient method. Note that, the best reconstruc-
tion is achieved when Φ0 is the identity matrix, and that the
worst one iis obtained when Φ0 contain uniformly distributed
entries. This is true for both methods. Note also that a spar-
sity P < 20 enhances reconstruction in all cases. The best
result is got with Φ0 = IM×N and P = 10.

5. CONCLUSION

This paper deals with compressive sensing paradigm and
is focusing on designing sparsity and measurement matri-
ces. We first start by learning the sparsity matrix using
Hilbert transformation and empirical mode decomposition.
The learned matrix is therefore composed of complex com-
ponents and has a good sparsifying property. Having the
sparsity matrix learnt, we use a gradient method to learn an
adaptive measurement matrix. The goal is to reduce the mu-
tual coherence of both matrices. Our method integrates the
dictionary normalization step into the function to optimize.
Simulations prove that it supports large scale problems, has
good convergence properties and achieves good performance
with respect to incoherence. Experiments on environmental
sounds show that the whole approach outperforms previous
method in signal reconstruction. Further, we will be inter-
ested in applying this approach in a classification oriented
measurement matrix design.

REFERENCES

[1] S. Kunis and H. Rauhut, “Random sampling of sparse
trigonometric plynomials, ii.orthogonal matching pur-
suit versus basis pursuit,” Foundations of Computa-
tional Mathematics, vol. 8, pp. 737–763, 2008.

[2] K. Engan, S.O. Aase, and J. Hakon Husoy, “Method
of optimal directions for frame design,” in IEEE Inter-

national Conference on Acoustics, Speech and Signal
Processing, 1999, vol. 5, pp. 2443–2446.

[3] M. Aharon, M. Elad, and A. Bruckstein, “Svdd: an
algorithm for designing overcomplete dictionaries for
sparse representation,” IEEE Transactions on Signal
Processing, vol. 54, pp. 4311–4322, 2006.

[4] M.G. Jafari and M.D. Plumbley, “Fast dictionary learn-
ing for sparse representations of speech signals,” in
Journal of Selelected Topics in Signal Processing, 2011,
pp. 1025–1031.

[5] B. Bouchhima, R. Amara, and M. Turki-Hadj Alouane,
“Dictionary learning using emd and hilbert transform
for sparse modeling of environmental sounds,” in Pro-
ceedings of the International Conference on Artificial
Intelligence and Pattern Recognition, 2014, pp. 104–
110.

[6] M. Elad, “Optimized projections for compressed sens-
ing,” IEEE Transaction on Signal Processing, vol. 55,
pp. 5695 – 5702, 2007.

[7] J.M. Duarte-Carvajalino and G. Sapiro, “Learning to
sense sparse signals: simultaneous sensing matrix and
sparsifying dictionary optimization,” IEEE Transaction
on Image Processing, vol. 18, pp. 1395 – 1408, 2009.

[8] E. Osherovich, “Designing incoherent dictionaries for
compressed sensing: algorithm comparison,” CoRR,
vol. abs/1206.4192, 2012.

[9] J. Xu, Y. Pi., and Z. Cao, “Optimized projection matrix
for compressive sensing,” EURASIP Journal on Ad-
vances in Signal Processing, 2010.

[10] V. Abolghasemi, S. Ferdowsi, B. Makkiabadi, and
S. Sanei, “On optimization of the measurement matrix
for compressive sensing,” in European Signal Process-
ing Conference, 2010, pp. 427–431.

[11] N. E.Norden Huang and Samuel.S Shen, Hilbert-
Huang transform and its applications, vol. 5, World
Scientific Publishing Co. Pte. Ltd, 2008.

[12] G. Davis, S. Mallat, and Z. Zhang, “Adaptive time-
frequency decompositions with matching pursuits,”
Optical Engineering, vol. 33, 1994.

23rd European Signal Processing Conference (EUSIPCO)

134


