
‘ON THE FLY’ DIMENSIONALITY REDUCTION FOR HYPERSPECTRAL IMAGE 

ACQUISITION 

 

Jaime Zabalza, Jinchang Ren, and Stephen Marshall 

 

Centre for excellence in Signal and Image Processing, Department of Electronic and Electrical Engi-

neering, University of Strathclyde, Glasgow, UK 
 

 

ABSTRACT 

 

Hyperspectral imaging (HSI) devices produce 3-D hyper-

cubes of a spatial scene in hundreds of different spectral 

bands, generating large data sets which allow accurate data 

processing to be implemented. However, the large dimen-

sionality of hypercubes leads to subsequent implementation 

of dimensionality reduction techniques such as principal 

component analysis (PCA), where the covariance matrix is 

constructed in order to perform such analysis. In this paper, 

we describe how the covariance matrix of an HSI hypercube 

can be computed in real time ‘on the fly’ during the data 

acquisition process. This offers great potential for HSI em-

bedded devices to provide not only conventional HSI data 

but also preprocessed information. 

 

Index Terms— Covariance matrix, data reduction, hy-

percube, hyperspectral cameras, principal component analy-

sis (PCA)
 
 

 

1. INTRODUCTION 

 

A large number of applications and developments have been 

proposed in recent years with relation to the use of hyper-

spectral imaging (HSI) data for signal and image processing. 

HSI sensors and cameras provide what is called hypercube, 

a 3-D structure where the pixels in a spatial scene are 

formed by a vector array with each of the vector elements 

corresponding to a given wavelength in the spectrum. 

Therefore, this large amount of data allows in-depth data 

processing to be applied in many diverse areas such as food 

analysis and security [1-2]. 

However, such large volumes of data require complex 

analysis. For that reason, HSI hypercubes and related data 

are usually subject to a feature extraction process, where 

different techniques are used to extract salient features [3-6]. 

This also includes dimensionality reduction, where the high 

correlation between adjacent spectral bands is addressed by 

classical and well-known techniques such as principal com-

ponent analysis (PCA), independent component analysis 

(ICA), and maximum noise fraction (MNF) [3, 6]. In partic-

                                                 
 

ular PCA with a number of its variants [7-9] is one of the 

most widely used methods in HSI. 

Implementation of many of these algorithms usually re-

quires the computation of spectral covariance matrices as a 

way of capturing information across the whole data cube. 

This computation can be quite complex in HSI applications, 

when the corresponding hypercube is of extremely large 

dimension in both spectral (hundreds of wavelengths) and 

spatial (thousands of pixels) domains, so not surprisingly, 

the literature already documents a number of parallel im-

plementations [10-11]. However, bearing in mind the acqui-

sition process by which many HSI cameras operate, i.e. 

sequentially acquiring sub-partitions of data, a novel innova-

tion proposed here is to carry out the real time ‘on the fly’ 

computation of the spectral covariance matrix within the 

image capture device simultaneously with the acquisition 

procedure [12], as we explain in this paper. 

 

2. ‘ON THE FLY’ COVARIANCE COMPUTATION 

 

Our proposal involves including dedicated signal processing 

within the HSI devices so their sequential acquisition of data 

(see Section 2.2) can be exploited for alternative covariance 

construction (Fig. 1), relieving memory requirements and 

allowing real time computation of the covariance matrix. 

 

 

Fig. 1.  ‘On the fly’ covariance for HSI devices. 
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2.1. Conventional covariance matrix computation 

 

Given a pixel vector 
T

nnnn B
xxx ],,,[

21
x  in a hyper-

cube of dimensions BWH  , where B  is the number of 

spectral bands, the procedure here consists of partitioning 

the 3-D hypercube into a 2-D data matrix namely 
HWB

HW
 ],,,[ 21 pppP  , where the initial pixels nx  

are subtracted the mean value HW
HW

n n /
1 

 xx , resulting 

in 
T

nnnn B
ppp ],,,[

21
p so the covariance matrix is ob-

tained by the following multiplication, where the dividing 

term is omitted for simplicity. 

 
BBT  PPC .   (1) 

 

Even though this calculation is straightforward for mod-

ern computers, this conventional procedure still has some 

drawbacks, as large dimensions of HSI hypercubes can lead 

to memory and computation problems, making implementa-

tion in portable or embedded systems unfeasible. For that 

reason, we propose a simple approach for obtaining the 

covariance matrix ‘on the fly’ simultaneously with the ac-

quisition process. 

 

2.2. HSI acquisition procedures 

 

The data capture present in current HSI devices and cameras 

can be divided into two groups: scanning and filter-based 

methods. On one hand, scanning techniques consist of a 

sequential procedure where the final image cube is obtained 

from partial spatial scenes, these may involve pixel scanning 

when individual pixels are acquired in every step, and line 

scanning (also known as push-broom technique) when spa-

tial lines of pixels are captured to build the final image. 

Conversely filter-based methods collect the whole spatial 

scene at once but only for a particular spectral wavelength. 

Consequently, each spectral band is captured sequentially in 

every step. A schematic illustration of the different HSI 

acquisition techniques is shown in Fig. 2. 

 

 

Fig. 2.  HSI acquisition procedures [12]. 

2.3. ‘On the fly’ covariance matrix computation 

 

Whichever acquisition technique is applied, it is clear that 

the procedure is sequential such that a series of small sub-

spaces of the original data P  can be used to gradually cal-

culate the covariance matrix. This can result in faster im-

plementations even up to real time. 

To this end, the partition by pixel np  (2), partition by 

row 
)(R

hP  (3), partition by column )(C
wP  (4), and partition by 

band 
)(B

bP  (5) can be used as subspaces of data for con-

structing the covariance matrix sequentially. These are de-

fined as in Table 1. 

 

Partition Subspace defined 

Pixel 
1 B

np                             (2) 

Row WBHWhHhh
R

h  ],,,[ )1(
)(

pppP    (3) 

Column 
( )

1 ( 1) 2 ( 1) ( 1)
[ , , , ]C

w H w H w H H w B H      
P p p p (4) 

 

Band 

WHHWH

WH

B
b

bb

bb























)()(

)()( 1)1(1

)(

pp

pp

P







(5) 

Table 1. Proposed partitions and their defined subspace. 

 

where the final covariance matrix is formed by the addi-

tion of the partial covariance matrices shown in Table 2. 
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Table 2. Covariance matrix accumulation by the partitions. 

 

2.4. Modification for real-time calculation 

 

In cases where the covariance matrix computation is re-

quired not only ‘on the fly’ within the HSI device but also in 

real-time, some modifications are required to include the 

mean subtraction procedure usually performed before multi-

plication in (1). 

Formulation of partitions np , 
)(R

hP , )(C
wP , and 

)(B
bP  

given in this manuscript already includes the mean subtrac-

tion procedure, as these partitions can be taken once the 

whole hypercube has been acquired to produce the covari-

ance matrix ‘on the fly’. However, covariance can also be 

computed in real time by the corresponding and original 
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non-subtracted partitions nx , 
)(R

hX , and )(C
wX . As the mean 

subtraction procedure requires all pixel values within a 

spectral band, this leads to a correction for all our approach-

es except the one using band partitions 
)(B

bP . 

Revisiting, the simple pixel partition problem, its corre-

sponding multiplication can be expressed as 

 

T
n

T
n

T
n

n
T
nn

T
nn

xxxxxxM

Mxxpp




,                   (10) 

 

where BB
n

M  is a correction matrix calculated from 

the nx  and the average pixel x , an expression simply de-

rived from the product of subtracted values  
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Updating the covariance equation (6), now we have  
 

CMxxC 

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where the correction matrix BBCM , which is 

equivalent for the rest of partitions, is expressed as  
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Simply developing this correction matrix, we have  
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where the second and third elements can be expressed as  
 

)()()(
1

)(

)()()(
1

)(

1

1

jHWij
HW

HWi

iHWji
HW

HWj

HW

n

n

HW

n

n

xxxx

xxxx












.   (15) 

 

Finally,  CM  is formulated as (16), which means it can 

be calculated in real time, at each iteration 
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3. EXPERIMENTS AND RESULTS 

 

A complete evaluation of the different approaches is per-

formed in order to show a comparison between them and in 

relation to the conventional case. Initially, the HSI data sets 

employed in the experiments are introduced and described. 

Then, mathematical equivalency among the approaches is 

demonstrated. Finally, a comparison in terms of memory 

requirements, complexity and simulated timing demon-

strates the benefits of our proposed approach. 

 

3.1. HSI datasets for evaluations 

 

Two data sets from different HSI sensors are employed to 

validate our proposal. First, Pavia University A (Pavia UA) 

is a subscene extracted from the original urban image taken 

in Italy with the Reflective Optics System Imaging Spec-

trometer (ROSIS) camera. Shown in Fig. 3, it includes 8 

labeled classes in the ground truth related to meadows, as-

phalt and others, presenting 150×150 pixels with 1.3 m 

resolution, and 103 available spectral bands in the range 

430-860 nm. 

 

 

Fig. 3.  Pavia UA data set description. 

 

Fig. 4.  Salinas B data set description. 

 

Second, Salinas B (shown in Fig. 4) is a 75×300 pixels 

subscene from a natural image taken over Salinas Valley, in 
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California, providing spatial resolution of 3.7 m in 204 valid 

spectral bands. It was acquired by the Airborne Visi-

ble/InfraRed Imaging Spectrometer (AVIRIS) instrument. 

The ground truth here contains 9 classes corresponding to 

broccoli, lettuce, grapes and others. 

 

3.2. Mathematical equivalencies 

 

The fundamental assumption behind alternative implemen-

tations of the covariance matrix is that the resulting final 

matrix obtained is exactly the same in all cases. Therefore, a 

simple example demonstrating mathematical equivalency is 

presented here. 

In the conventional implementation in (1), the covari-

ance matrix C  is obtained from a large multiplication based 

on the original partition of data P . Accordingly, it is 

straightforward to express each element in matrix C  as  

 

)()(),(
1

jiji n
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n

n ppC 
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Alternatively, for a simple pixel partition the subspaces 

multiplication leads to  
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Simply by accumulating (18) for all pixels in the hyper-

cube, the final covariance matrix is found as  
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which provides the same values as the conventional case 

(17) in the BB  elements of the matrix. The equivalency 

of the rest of partitions can be proved in a similar way. 

This equivalency can be also demonstrated in practical 

terms. Actually, the implementation by the different parti-

tions leads to negligible differences in the covariance matrix 

elements, clearly below 0.001%. 

Additionally, the application of PCA by means of the 

different covariance matrices (Table 3) proves again the 

equivalency, as regardless of the partition employed to 

compute the covariance matrix in the PCA method, exactly 

the same classification results in land-cover analysis are 

achieved, in this case by the Support Vector Machine 

(SVM) classifier with a rate of 30% for training the model. 

 
 

Partition used Pavia UA Salinas B 

Conventional 96.45 ± 0.27 94.50 ± 0.16 

Row 96.45 ± 0.27 94.50 ± 0.16 

Column 96.45 ± 0.27 94.50 ± 0.16 

Pixel 96.45 ± 0.27 94.50 ± 0.16 

Band 96.45 ± 0.27 94.50 ± 0.16 

Table 3. Classification accuracy (%) using PCA (5 features). 

 

3.3. Memory requirements 

 

By using smaller partitions of data, which can be accessed 

during the sequential acquisition in HSI devices, the first 

clear advantage is the reduced size of the multiplying matri-

ces for covariance calculation. The diverse sizes and contig-

uous memory requirements for the different partitions are 

compared to the original case in Table 4. 

Each partition sees its size reduced by a factor related to 

its dimensionality in the hypercube. Therefore, the pixel 

partition gives the highest reduction for the current data sets. 

Memory is expressed in kB, where data format considered is 

8 bytes per value (double). 

 

Partition Matrices size Pavia UA Salinas B 

Original B×HW 18540 36720 

Pixel B×1 0.83 1.63 

Row B×W 124 490 

Column B×H 124 122 

Band 1×HW 180 180 

Table 4. Size of matrices and memory requirements (kB). 

 

3.4. Number of multiplications and additions 

 

The global number of multiplications and additions for all 

the cases is just the same, due to the equivalent implementa-

tions. However, there is a small difference when the imple-

mentation is performed in real time. 

In the real time case, partitions require different com-

plexity in each iteration (loop), with additional operations to 

be undertaken once the iteration process is completed, as 

can be seen in Table 5. 

A trade-off between loop complexity and number of it-

erations is easily recognizable when using different parti-

tions. However, only the band partition is free of further 

calculations after the sequential acquisition. This is simply 

because the real-time correction is not necessary, as the 

average procedure is already included in the iterations. 
 

Partition 
Single loop  Loop 

(k) 

Afterwards 

Mult. Add. Mult. Add. 

Pixel B2 3B2 HW 2B2 B2 

Row B2W 3B2W H 2B2 B2 

Column B2H 3B2H W 2B2 B2 

Band HW(2k-1)+1 HW(2k+1)-2k B 0 0 

Table 5. Multiplications and additions during acquisition. 
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3.5. Simulated timing comparison 

 

Finally, to give an idea of the efficiency resulting from our 

proposal, a simulation of execution time required after ac-

quisition in real time covariance computation is presented. 

These experiments are performed using MATLAB 8.0 on a 

PC with 3.1 GHz CPU and 8 GB Memory. 

Fig. 5 shows the total execution time required just after 

the sequential acquisition process is finalised by the corre-

sponding partition. Our approaches take advantage of the 

time gap between sequential acquisitions of partitions; 

therefore, this gap can be employed for real-time computa-

tion, which includes partial covariance accumulation and 

related issues such as memory access and data transfer. 

Once the acquisition process is completed (red line in 

Fig. 5), band partitions require no further operations, while 

the remaining row, column and pixel partitions still need a 

few milliseconds to complete the covariance calculation. 

Nevertheless, these times are very small in comparison to 

the timing needed if the original partition is selected, which 

clearly shows the efficiency involved by the ‘on the fly’ real 

time calculation. 

 

Fig. 5.  Simulated timing for different partitions. 

 

4. CONCLUSIONS 

 

The fast growth and remarkable development experienced 

by HSI technology in recent years has dramatically in-

creased its use as it becomes a tool with enormous potential 

and a promising future. Due to the high dimensionality of 

the hypercubes, large volumes of data must be processed.  

Common preprocessing techniques such as PCA and others, 

require access to the covariance matrix. To this end, its 

efficient computation is of huge value in many HSI applica-

tions. 

However, covariance acquisition from high dimensional 

HSI data sets suffers from huge drawbacks, especially in 

portable and embedded systems, due to restricted capacities 

in terms of memory and computation power. For this reason, 

we propose an ‘on the fly’ procedure, which makes the 

computation of the covariance matrix feasible in real time 

directly from HSI devices with embedded processing. 
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