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ABSTRACT

In this paper, we tackle the problem of adapting a set of clas-
sic sparsity-inducing methods to cases when the gradient of
the objective function is either difficult or very expensive to
compute. Our contributions are two-fold: first, we propose
methodologies for computing fair estimations of inexact gra-
dients, second we propose novel stopping criteria for com-
puting these gradients. For each contribution we provide the-
oretical backgrounds and justifications. In the experimental
part, we study the impact of the proposed methods for two
well-known algorithms, Frank-Wolfe and Orthogonal Match-
ing Pursuit. Results on toy datasets show that inexact gradi-
ents can be as useful as exact ones provided the appropriate
stopping criterion is used.

Index Terms— sparse learning, greedy algorithms, inex-
act gradient, randomization

1. INTRODUCTION

Over the last few years, there has been an increasing interest
in inference problems featuring data of very high-dimension
and few number of observations. Such problems occur in a
wide variety of application domains ranging from computa-
tional biology and text mining to information retrieval and
finance. In order to extract knowledge from these datasets, a
large amount of research from the machine learning, statistics
and signal processing communities has been devoted to de-
veloping statistical models featuring some sparsity properties,
such as models that use only few of the data’s dimensions. To
obtain these models, one typically needs to solve:

min L(w) subject to ||w|lo < K (1)

where L is a function that measures the goodness-of-fit of the
model, |[w/|q is the £y pseudo-norm of the vector w and K is
a parameter that controls the sparsity level.

A common approach to solve (I)) is to make use of greedy
methods that provide a (possibly approximate) solution. A
flurry of algorithms have been proposed to this end, the
most popular ones being Matching Pursuit (MP), Orthogonal
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Matching Pursuit (OMP) [1}2] and their descendants, most
of which are in the family of the so-called Gradient Pursuit
algorithms [3]]. Another way for escaping the combinatorial
nature of the problem induced by the ¢y pseudo-norm is to
have it replaced by ¢;-norm, a convex and continuous sur-
rogate of {y: this transforms (I}) into the well-known Lasso
problem. There also exists a wide variety of algorithms for
its resolution ranging from homotopy methods [4]] to the
Frank-Wolfe (FW) algorithm [5].

A common point of the aforementioned approaches is
that they are iterative methods requiring, at each iteration,
the computation of the gradient of the objective function L.
For large-scale and high-dimensional settings, computing the
gradient at each iteration may be very time-consuming.

In this work, we address the problem of accelerating some
sparsity-inducing algorithms such as gradient pursuit meth-
ods and the Frank-Wolfe algorithm with an ¢, ball constraint,
by exploiting inexact gradient information. Our contributions
come in the form of strategies that make use of inexact gradi-
ents. These approaches exploit a specific property of sparsity-
inducing algorithms: at each iteration, they seek the compo-
nent of the gradient with the largest (absolute) value.

2. SPARSE LEARNING ALGORITHM WITH
EXTREME GRADIENT COMPONENT

2.1. Framework

Let us consider a problem where we want to estimate a rela-
tion between a set of n samples gathered in a vector y € R"
and the matrix X € R™*?. In a sparse signal approximation
problem, the columns of X are the elements of a dictionary
and y the target signal, while in a machine learning problem,
the ¢-th row x; contains the features of the ¢-th example and y;
is its label. Our goal is to learn the relation between y and X
through a linear model of the data denoted as Xw by looking
for the vector w that solves problem (1) when:

L(w) =Y l(yi, g(w'x,)). ©)
=1

For instance, L might be the least-square error

L(w) =

= Sly —Xwl3,
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Algorithm 1 Frank-Wolfe Algorithm
1: set k =0, initialize w
2: for k=0,1, --- do
3 s, =argmingecs' VL(Wy)
4 d, =s;, —wy
5. set, linesearch or optimize 7y, € [0;1]
6:  Wiy1 = Wi +ydg
7: end for

or the logistic loss

Liog(w) = log(1 + e V% ™),

=1

2.2. Algorithms for Solving Problem (T)

We briefly recall the core of the methods we consider as best
candidates to take advantage of our acceleration procedure.
Sparse learning with the Frank-Wolfe Algorithm (FW).
The FW algorithm (Algorithm I)), is a simple procedure that
provides a solution for:

vrglelg L(w), (3

where C is usually a compact subset of R? and L is a con-
vex and differentiable function, by iteratively looking for a
search direction and updating the current iterate. The search
direction sy, is obtained from the following convex optimiza-
ton problem:

Sk = arg min STVL(Wk), )
scC

which may (or not) be efficiently solved, depending on the
constraint set C'— for achieving sparsity, we typically choose
C as a £1-norm ball, which turns eq. (@) into a linear program.
While conceptually simple, this algorithm has been shown
to be linearly convergent [5,|6]. Interestingly, it can also be
shown that, if an inexact gradient information ?L(wk) is
available, convergence is still guaranteed under the condition:

sp VL(wy) < g}c_lél s'VL(wy) + €,

and some closeness condition between V L(wy,) and VL(wy,).

This condition comes in handy when the minimization prob-
lem (4) is expensive to solve. For instance, if C' is an unit-
norm ball associated with some norm || - || and s, a minimizer
of mingec ST@L(Wk), then it suffices that:

IVL(xk) = VL(xi)|« < €, Q)

where || - ||, is the conjugate norm associated with || - ||, to
ensure convergence [5]]. However, this condition is not useful
in practice, since it depends on the exact gradient.
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Gradient Pursuit. This set of methods, originally introduced
in [3]], is constituted of greedy strategies exhibiting the effec-
tiveness of OMP with the small computational requirements
of MP, and both MP and OMP might be seen as members of
this family. These methods are specifically designed to pro-
vide a solution for problem (I)), when L is the least square
error L1, — note however that they can be extended to carry
over to more general losses such as the one stated in (2)). The
essence of these pursuit methods is to iteratively refine the
parameter vector w by performing updates of the form

W+ W+ ad,

where d is some descent direction and « an appropriate step
size. At each iteration, the computation of d hinges on the
descent directions computed so far and on the gradient of L;
more precisely, it requires the index of the gradient compo-
nent with the largest absolute value.

2.3. Extreme Gradient Component

As stated above, the gradient pursuit algorithm needs to find at
each iteration, the largest absolute component of the gradient:

i* = argmax |VL(wy)|;.

Similar situations arise in the FW algorithm, for instance,
when the set C' is the ¢1-norm ball or the simplex constraint,
and in addition the components of w need to be positive. The
search direction is then given by:

arg Il’élél s'VL(wy,) = argmin[VL(wy,)|J;

Hence, in both cases (as well as in MP and OMP), at each
iteration, we are neither interested in the gradient, nor in the
extreme values, but only in the coordinate of the component
with the smallest or the largest absolute value.

Based on these observations, our goal is to propose meth-
ods that efficiently compute the extreme component of the
gradient. In particular, in situations where the gradient is ex-
pensive to compute, we aim at providing algorithms that pro-
duce cheaper approximated gradient for which the extreme
component of interest is the same as the exact gradient one.

3. LOOKING FOR THE EXTREME GRADIENT
COMPONENT

3.1. Statement of the Problem

The gradient of the objective function (2) is of the form:
VL(w) =Y (i, 9(w'x:))g' (W x)x; = X r,
where r = (¢'(y;,9(W'x;)))g'(W'%i))iel) € R". This

particular form implies that the gradient can be computed it-
eratively, obtaining at each iteration an approximate gradient
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V L. This means that for a given iteration ¢, we have:
VL =VLi1+U (6)

where Uy is typically r; x;»r for a given j.

Building on this observation, our goal is to devise efficient
ways of approximating the gradient so that the top entry of
this approximation is also the top entry of the exact gradient.

3.2. A Deterministic Approach

Let Z; denote the index set of the examples already chosen in
the first ¢ iterations for computing VL;. At + 1, our goal is
to find the example j* such that:

j* = argmin ||[VL— VL; —x;7] ™)
je{l,n N\

where by definition @LH_l = @Lt +x;+1;+. However, since
VL is not accessible, the solution of this problem cannot be
computed. Hence, we have to resort to an approximation:

j* = argmax ||[VL—VL| —|VL—=VLei| @®)
Jje{1,....n\Zs

By upper-bounding the objective value in (8], one can derive
the best choice of 7;x; that leads to the largest variation of
the gradient estimation norm residual. Indeed, we have:

IVL—=VL¢|| = || VL= VL 41| < ||VL—=VL = VL+VL ]|
= lx; sl = lIxlllr;l )

This suggests that the selected index j should be the one with
the largest absolute residual ||x;|||r;|. In the first iteration, the
algorithm chooses the index that leads to the largest value of
eq. @]), in the second one, it selects the second best, and so
forth: the selection boils down to considering the examples in
a decreasing order of absolute residuals.

Note that for this method, the exact gradient is recovered
when ¢ = n. We are assured to retrieve the correct extreme
entry of the gradient, alas at the expense of extra computa-
tions needed for evaluating (useless) stopping criteria. If the
procedure stops at t < m, we gain in efficiency at the risk of
missing the correct extreme entry.

3.3. A Randomized Approach

The problem of finding the gradient’s extreme component can
also be addressed from the point of view of randomization.
The approach consists in considering the computation of
X Tr as an the expectation of a given random variable. Recall
that X is composed of the vectors {x; } ;, x; € R<. Hence,
the matrix-vector product X 'r can be rewritten: X r =
2?21 r;x;. Let A} denote the interior of the probabilistic
simplex of size n. For any element p = (p;) e € A, We
introduce a random vector C' that takes value in the finite set

C={cj=rjxj/pj:j=1,...,n}, (10)
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so that P(C' = ¢;) = p;. This way,

EC = ipjcj = i pijrj‘Xj
j=1

=1 i

= rx;=X"r. (11

Jj=1

If Cy,---,Cy are independent copies of C' and Cs is their
mean then .
EC® =X Tr, (12)

thus C* is an estimator of the matrix-vector product that we
are interested in i.e the gradient of our objective function.

Hence, according to the above, a nice approach for esti-
mating the extreme component of the gradient is to randomly
draw s copies of C', to compute their average and then to look
for the extreme component of this estimated gradient. Inter-
estingly, this approach based on randomized matrix multipli-
cation can be related to our deterministic approach. Indeed, a
result given by [7] (Lemma 4), says that the element p € A}
that minimizes the variance of C* is such that

P o ||l (13)
It thus implies that vectors of large |r;|||x; || have higher prob-
ability to be sampled.

3.4. Stopping Criteria

In the following we present two strategies for determining the
number of elements needed in the previous methods: one that
holds for any cases and the second one that holds only for
the Frank-Wolfe algorithm in the deterministic sampling case.

Stability condition Let j* denote the coordinate s.t. s =
argmin; VL(xy)|; and 7' the maximum number of itera-
tions. Our objective is to estimate j* with the fewest number
t of iterations as possible, under the following hypothesis:

I <TWVWt:t;<t<n j*= argmin@Lt(xk)|j.
J

Formally, this condition means that V¢ > t;, we have:

[@L#Tf UWL* < [@LﬁTZ_tUmL VielL,---.d
=0 =0

However, checking the above condition is as expensive as
computing the full gradient, thus we propose an estimation
of j* based on an approximation of this inequality, by trun-
cating the sum to few iterations on each side. This consists in
checking whether the index j* has changed over the last N;
iterations. We refer to this as the stability criterion.

Error bound criterion In Section [2.2] equation (5) ties the
convergence of the inexact FW algorithm to the ability of
upper-bounding the difference between the approximate gra-
dient and the exact one, i.e. the method can be stopped as soon
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as the difference is smaller than the quantity ¢’. In practice,
this criterion cannot be computed as it depends on the com-
putation of the exact gradient but it can be upper-bounded by
norm equivalence and simple algebras:

1920 = VL < VL = VLI = 30| 3 %)

%

o €L
<N Il =D gl
i J€Ty JEL

This leads to the following criterion > 7 [|x;{[1[r;| < €’
Note that this criterion can be easily checked at each gradient
update, provided the norms ||x;||; are computed beforehand.

4. EXPERIMENTS

4.1. Experimental setting

In order to illustrate the benefit of using inexact gradient for
sparse learning, we have designed several experiments for
which a sparse signal has to be recovered either by means
of FW or OMP. The target sparse signals have been built as
follows. For a given size of the dictionary d and a number k of
active elements in the dictionary, the k£ non- zero positions of
the true coefficient vector w* are chosen randomly and their
values are drawn from zero-mean unit variance Gaussian dis-
tribution, from which we added 4-0.1 according to the sign of
the values. The columns of the matrix X € R"*¢ are drawn
uniformly from the surface of a unit hypersphere of dimen-
sion n. Finally, the target vector is obtained as:

y=Xw"+e

where e is a noise vector drawn from Gaussian distribution
with zero-mean and variance o2 determined from a given
Signal-To-Noise ratio as

0_3 _ l”XW*HQ . 1O_SNR/10_
n

Unless specified, the SNR ratio has been set to 3. For each

setting, the results are averaged over 20 trials (X, w* and e

are resampled at each trial).

The criteria used for evaluating and comparing the pro-
posed approaches are the running time of the algorithms and
their ability to recover the true non-zero elements of w*. The
latter is estimated through the F-measure between the support
of w* and its estimation W :

|supp(w*) U supp(W)|
|supp(w*)| + [supp(W)|’

F —meas =2

where, supp(w) = {j : w; > 7} is the support of vector
w and -y is a threshold (set to 0.001) used to neglect some
non-zero coefficients that may be obliterate by the noise.
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Fig. 1. Performances are compared with increasing precision
on the inexact gradient computation.

4.2. Sparse learning using a Frank-Wolfe algorithm

For this experiment, the constraint set C'is the ¢; unit-ball and

the loss function is L(w) = £||y —Xw/||3. Our objectives are:

e analyze the capability of inexact gradient approaches to
recover the true support and compare them to the exact
gradient of FW,

e compare the two stopping criteria of Section [3.4]

The exact gradient is computed using the accumulation strat-
egy of eq. (6) so as to make all running times comparable.
The maximum number of iteration for FW is set to 5000.

Figure [I| shows the results obtained for n = 2000, d =
4000 and k£ = 50. We present the running time and recovery
abilities of the FW algorithm with an exact gradient (exact), a
deterministic gradient sampling with a stability stopping cri-
terion (deterministic), same with an error bound stopping cri-
terion (grad upb), a uniform random sampling (uniform) and
a best probability sampling (best). The figures depict the per-
formances with respect to stopping condition parameter N
of the stability criterion.

The deterministic approach used with any stopping crite-
rion perfectly recovers the exact support of w*, while both
randomized approaches achieve an average F-measure of
0.975 with Ny = 5. As expected, when NN, increases, the
performances of these two approaches increase also.

From a computational running-time point of view, the best
results are obtained by the approaches based on determin-
istic and randomized sampling strategy with stability crite-
rion, achieving a gain up to a factor 4 with respect to the ex-
act Frank-Wolfe algorithm. Interestingly, this comes with no
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compromise on the recovery performance for the determin-
istic approach. For the randomized strategies, increasing the
parameter [V, leads to a slight increase of running time, hence
for these methods, a trade-off can eventually be found.

When comparing the stability and the error bound stop-
ping criterion, the latter seems rather inefficient. While based
on theoretical analysis, the bound is loose enough to be non-
informative. Indeed, a careful inspection shows that most in-
exact gradient computations use about 98% of the residuals.
In addition, extra computations needed for the bound estima-
tion, makes the approach less efficient than the exact FW.

In summary, from this experiment, we can conclude that
the deterministic and randomized sampling strategies are the
most efficient. However, they should be used in conjunction
with the stability stopping criterion.

4.3. Sparse Approximation with OMP

Here, we evaluate the effect of using an inexact gradient in
a greedy algorithm framework like OMP. The toy problem
is similar to the one used above except that we analyze the
performance of the algorithm for an increasing number k& of
active atoms. The inexact gradient methods are evaluated and
compared in terms of efficiency and correctness to the true
gradient in the OMP algorithm.

For OMP, the stopping criterion is based on a fixed num-
ber of iteration corresponding to the desired sparsity k. For all
sampling approaches, the stopping criterion for gradient accu-
mulation is based on the stability criterion, and the parameter
Ng adaptively set at 1% of the dictionary size.

Results are reported in Figure [2] In terms of support re-
covery, when the number of active atoms is small, it seems
that the deterministic approach performs better than the ran-
domized sampling strategy. Note that for any value of k, the
randomized strategies suffer more than the exact and deter-
ministic sampling strategies for recovering the true vector w*
support. From a running-time point of view, again, we note
that sampling strategies are more efficient than the exact ap-
proach, with a slight advantage to the deterministic one.

5. CONCLUSION

In this paper, we introduced novel methodologies for speed-
ing up sparsity-inducing algorithms, by making use of an in-
exact (but fair) estimation of the gradient. Two stopping cri-
teria adapted to these methodologies were also introduced.
For all the contributions, we provided some theoretical jus-
tification. The experimental results are quite encouraging as
they strongly suggest that coupling inexact gradient methods
with the stability condition yields similar results as the exact
gradient one, with a significant gain in the running-time. Fu-
ture works will focus on improving the error bound criterion,
since, in its current form, it does not perform well. Other
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Fig. 2. Comparing OMP with different ways for computing
the inexact gradient, with n = 2000 and d = 4000.

works will concern the adaptation of successive reject bandit
strategies to extreme gradient component estimation.
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