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Abstract—We consider the problem of joint estimation of structured
inverse covariance matrices. We assume the structure is unknown and
perform the estimation using groups of measurements coming from
populations with different covariances. Given that the inverse covariances
span a low dimensional affine subspace in the space of symmetric
matrices, our aim is to determine this structure. It is then utilized
to improve the estimation of the inverse covariances. We propose a
novel optimization algorithm discovering and exploring the underlying
structure and provide its efficient implementation. Numerical simulations
are presented to illustrate the performance benefits of the proposed
algorithm.

Index Terms—Structured inverse covariance estimation, joint inverse
covariance estimation, graphical models.

I. INTRODUCTION

Large scale covariance and inverse covariance estimation using
a small number of measurements is a fundamental problem in
modern multivariate statistics. In many applications, e.g., linear array
processing, climatology, spectroscopy, and longitudinal data analysis
statistical properties of variables can be related due to natural physical
features of the systems. Such relations often imply linear structure
in the corresponding population covariance or inverse covariance
matrices.

In this paper we focus on structured inverse covariance (concen-
tration) matrix estimation. There are plenty of examples of inverse
covariance estimation with linear structure. A partial list includes
banded [1-3], circulant [4, 5], sparse (graphical) models [6, 7], etc.
An important common feature of these works is that they consider
a single and static environment where the structure of the true
concentration matrix, or at least the class of structures, as in sparse
case, is known in advance. Often, this is not the case and techniques
are needed to learn the structure from the observations. A typical
approach is to consider multiple datasets sharing a similar structure
but non homogeneous environments [8—11]. This is, for example,
the case in covariance estimation for classification across multiple
classes [12]. A related problem addresses tracking a time varying
covariance throughout a stream of data [13, 14], where it is assumed
that the structure changes at a slower rate than the covariances
themselves [15]. Here too, it is natural to divide this stream of data
into independent blocks of measurements. In [16] we considered a
similar setting, when the covariance matrices share the same linear
structure.

Our goal is to first rigorously state the problem of joint con-
centration matrices estimation with linear structure and derive the
lower performance bound for any unbiased estimator. Secondly, we
propose and analyze a new algorithm of learning and exploring
this structure to improve estimation of the concentration matrices.
More exactly, given a few groups of measurements having different
covariance matrices each, our target is to determine the underlying
low dimensional linear space containing or approximately containing
the concentration matrices of all the groups. The discovered subspace
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can be further used to improve the concentration estimation by pro-
jecting any unconstrained estimator on it. Most of the previous works
considered particular cases of this method, e.g. factor models, entry-
wise linear structures like in sparse and banded cases, or specific
patterns like in banded, circulant and other models. We propose a new
generic algorithm based on joint negative log-likelihood minimization
penalized by the dimensionality of the subspace containing the
inverse covariances. In [16] we approached the problem of low
dimensional covariance estimation using the Truncated SVD (TSVD)
technique applied to the sample covariance matrices (SCM-s) of
the groups of measurements. The reason we do not use the TSVD
approach straight forwardly in the case of concentrations is that it
would require inversion of the SCM-s, which becomes problematic
when the number of samples in groups is relatively small. The
algorithm we propose avoids this restriction and demonstrates good
performance even when the amount of measurements is insufficient.

The rest of the text is organized as following: first we introduce
notations, state the problem and illustrate examples. Then we derive
the lower performance bound, propose our Joint Inverse Covariance
Estimation (JICE) algorithm and provide its efficient implementation.
In the end of the paper we provide numerical simulations demonstrat-
ing the advantages of the proposed algorithm.

Given p € N, denote by S(p) the | = % dimensional linear
space of p X p symmetric real matrices. I; stands for the d x d identity
matrix. For a matrix M, its Moore-Penrose generalized inverse is
denoted by M. If M is symmetric, we write M > 0 when it is
positive definite. For any two matrices M and P we denote by M QP
their tensor (Kronecker) product. ||-|| denotes the Frobenius, ||-||, -
the spectral and ||-||, - the nuclear (trace) norms of matrices. For any
symmetric matrix S, s = vech (S) is a vector obtained by stacking
the columns of the lower triangular part of S into a single column.
In addition, given an [ dimensional column vector m we denote
by mat (m) the inverse operator constructing a p X p symmetric
matrix such that vech (mat (m)) = m. Due to this natural linear
bijection below we often consider subsets of S(p) as subsets of R'. In
addition, let vec (S) be a p? dimensional vector obtained by stacking
the columns of S, and denote by Z its indices corresponding to the
related elements of vech (S).

II. PROBLEM FORMULATION AND EXAMPLES

Consider a heterogeneous Gaussian model, namely, assume we are
. 1 . .
given K > 1 = % groups of real p dimensional normal random
vectors

X, ~N(0,Qx), i=1,....,n, k=1,...,K, (1)

with n i.i.d. (independent and identically distributed) samples in each
group and covariances

Qr =E[xixi], k=1,..., K. )
We assume that the inverse covariances
Ty =Q' =0, k=1,...,K, 3)

1796



23rd European Signal Processing Conference (EUSIPCO)

exist and span an r dimensional affine subspace of S(p). Our

main goal is to estimate this subspace and use it to improve the

concentration matrices estimation.
Let us list a few common affine subspaces which naturally appear
in typical signal processing applications.

« Diagonal: The simplest example of a structured concentration
matrix is a diagonal matrix. This is often the case when the
noise vectors are uncorrelated or can be assumed such with great
precision. In this case r = p. Note that the diagonal structure
remains unaltered under inversion, thus making diagonal concen-
tration equivalent to the diagonal covariance case, considered in
[16].

« Banded: It is often reasonable to assume that the non-neighboring
elements of a normal random vector are conditionally independent
given all the other elements. Specifically, claiming that ¢-th element
of the random vector is conditionally independent on the h-
th if | — h] > b leads to the b-banded inverse covariance
structure. The subspace of symmetric b-banded matrices constitutes
an r = W dimensional subspace inside S(p). Banded
inverse covariance matrices are ubiquitous in graphical models,
[6, 71.

o Circulant: The next common type of structured concentration
matrices are symmetric circulant matrices, defined as

t ta s tp
tp t1 t2 ... tpa

T=1. . . s C))
tQ t3 t4 tl

with the natural symmetry conditions such as ¢, = t2, etc. Such
matrices are typically used as approximations to Toeplitz matrices
which are associated with signals obeying periodic stochastic
properties, e.g. the yearly variation of temperature in a particular
location. A special case of such processes are classical stationary
processes, which are ubiquitous in engineering, [4, 5]. Symmetric
circulant matrices constitute an r = p/2 dimensional subspace
if p is even and (p + 1)/2 if it is odd. Interestingly, like in the
diagonal case, this structure does not change under inversion, [17],
making the estimation problems in covariances and concentrations
analogous, [16].

« Sparse: Sparse inverse covariance models generalize banded struc-
tures and are very common. In multivariate Gaussian distributions
zero entries of the concentration reveal conditional independences.
When graph representation is utilized to express the relations
between the variates, zeros in inverse covariance are translated to
missing edges in the graph making it sparse. Recently, Gaussian
graphical models have attracted considerable attention due to devel-
opments in biology, medicine, neuroscience, compressed sensing
and many other areas, [6, 7, 18, 19]. An important property of
the sparse graphical models is that they do not usually assume the
graph structure known in advance and one of the purposes of most
estimation algorithms is to define this structure.

In the following it will be convenient to use a single matrix notation

for the multiple concentration matrices

tk:VGCh(Tk), kZl,...,K, (5)
Y =[t1,...,tx] (©6)

Using these notation, the prior subspace knowledge discussed above
is equivalent to a low-rank constraint

Y =UZ, @)

where U € R™™" and Z = [z1,...,2zx] € R"**. Essentially our
problem reduces to estimation of Y assuming it is low-rank. In the

analysis we will assume r is known in advance, but the algorithm
we propose recovers it from the data.

III. LOWER PERFORMANCE BOUNDS

Before addressing possible solutions for the above inverse covari-
ance structure estimation problem, it is instructive to examine the
inherent performance bounds. For this purpose we use the Cramer-
Rao Bound (CRB) to lower bound the Mean Squared Error (MSE)
of any unbiased estimator Y of Y, defined as

MSE = E {H?-YH?} ®)

The MSE is bounded from below by the trace of the correspond-
ing CRB matrix. To compute this matrix, for each i we stack the
measurements x;, into a single vector

X
x'=| | ~NOT"), i=1,...,n )
X
where the block-diagonal matrix T is defined as

']:‘(U7 Z) = diag {Tl, .o .,Tk}

= diag {mat (Uz,),...,mat (Uzk)}. (10)
The Jacobian matrix of this parametrization reads as
% o 80 .0
t t
- oU,z) P :
at at
T[IJ( 0 0 8z§
zi oL, U 0 0
T
_ zz®L 0 U € RUEX(r+Kr) an
zE®I, 0 0 ... U
where we have used the following notation:
%: %% Oty , (12)
ou ou; Ouz ou,
and the formulae
ot o0Uz; 7 Oty oUzy
Tk =21 k= =U. 13
811]' Ouj S azk 8z;€ ( )

Since at most r of the vectors z1, ...,z are linearly independent, at
most I+ (K —r)r rows of the matrix J can be linearly independent
and, therefore, in this case we obtain

rank J = Ir + Kr — r° < min[IK, Ir + K], (14)

reflecting the fact that the parametrization of T or Y by the pair
(U,Z) is unidentifiable. Indeed for any invertible matrix A, the
pair (UA, A™'Z) fits as good. Due to this ambiguity the matrix
FIM(U, Z) is singular and in order to compute the CRB we use
the Moore-Penrose pseudo-inverse of FIM (U, Z) instead of inverse,
as justified in [20]. Given n i.i.d. samples x*,i = 1, ..., n, we obtain

CRB = %J FIM(U, Z)'J7. (15)

For the Gaussian population the matrix FIM(U, Z) is given by

FIM(U, Z) = %JTdiag { T, ® T,;l}m} J, (6
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where [M]; ; is the square submatrix of M corresponding to the

index set Z, defined in the notations section. The bound on the MSE
is therefore given by

MSE > Tr (CRB) = 1

n

2

n

Tr (FIM(U, Z)TJTJ)
Tr ([JTdiag {lti o1, 1] ' JTJ> . an

To get more intuition on the dependence of the MISE on the model
parameters, we bound it from below. Denote

. _ —1
A= min [T, "] 18)
to get the bound
2
MSE > 2 1y <[JTJ]TJTJ)
n
2 2
= %rankJ: g(errKr—r?). (19)

As expected, the dependence on the model parameters is similar to
that obtained in [16] for the joint structured covariance estimation
and in [21] for the problem of low-rank matrix reconstruction.

IV. JICE ALGORITHM

We now proceed to the Joint Inverse Covariance Estimation (JICE)
algorithm of the inverse covariances T, ..., Tk, utilizing the rep-
resentation (7) of Y. The most natural brute force approach would
be to form the K SCM-s

L~ ki

Sk—n;xixi , k=1,... K, (20)
invert them and fit by a subspace of small dimension. This can be
done, for example, by the means of Principal Component Analysis
(PCA). Such approach, applied to the SCM-s (not to their inverses),
was proposed in [16] to treat the problem of joint covariance
estimation. When the number of samples n in each group is smaller
than or even close to the dimension p (the scenario we are mostly
interested in), the inversion of the SCM-s would be impossible due
to rank deficiency or would approximate the true inverse covariances
poorly, thus causing the proposed PCA algorithm to fail. Instead, we
propose a rather different optimization algorithm based on regularized
likelihood maximization and its efficient implementation.

A. The Basic Algorithm

Recall that our aim is to estimate the true inverse covariances, while
simultaneously trying to keep the dimension of the space spanned
by the estimators small. For this purpose we suggest the following
regularized average log-likelihood optimization program

[Ty,...,Tk]

K ~ ~ ~

= argmin Z [—log|Tk| + Tr (Ska)] +n HYH , (2D

"f‘l,m,TK k=1

where B _ B
Y = [vech (Tl) ..., vech (TK)], (22)
and 7 is a regularization parameter chosen as
n= CE, (23)
n

where the detailed derivation of the appropriate value of the constant
c is postponed to the full paper due to lack of space. Below we use
cross-validation technique to establish the best fit of ¢ numerically.

Program (21) aims at minimizing the average negative log-
likelihood of the K groups of measurements and simultaneously en-
forces joint low dimensional structure on the concentration matrices.
The latter is achieved by reducing the nuclear norm of Y. Nuclear
norm is a convex envelope of the counting measure on singular values
of a matrix. Therefore, intuitively the purpose of the penalty term in
(21) is to decrease the number of non-zero singular values, [22].
Both terms of the program are convex, thus guarantying success of
any standard numerical solver, such as CVX, [23, 24].

B. Bias Removal

The estimator defined by (21) suffers from bias introduced by the
nuclear norm regularization. We suggest an additional step aimed at
removing this bias. Denote the vectorized solution of (21) by

% = [veeh () o vee (74)] .

Analogously to the original parametrization (7), consider the decom-
position

Y = UZ, (24)
where U € R'™* has orthonormal columns and Z € ]Rsxf . Such
decomposition naturally suggests treating the columns of U as the
basis vectors of the approximate low dimensional subspace of S(p).
We get an improved concentration matrices estimator by minimizing
the average negative log-likelihood over the subspace spanned by U

[6[\‘37"'7;1\‘%]

(25)

_ Z [—10g|i‘k\ + Tr (Sk’f‘k)} .

K
= argmin
T1,....,Tg Cspan(ﬁ) k=1

Remarkably, this additional bias removal step requires solution of a
simple convex optimization problem. Thus, the algorithm decouples
into two convex programs, which can be treated using any off-the-
shelf numerical solver. Below we compare both algorithms using
numerical experiments.

C. ADMM Implementation

Following [25], we propose an efficient way to solve (21) based
on the Alternating Direction Method of Multipliers (ADMM). The
idea behind the ADMM is to optimize the augmented target

x

Z [—10g|’i‘k| + Tr (Sk’i‘k)] +n H?

T1,..., Tk =1

*

K 2
ZHVGCh (Tk)—?kH ., (26)
k=1

.. Vech(’f‘k):?:,k, k=1,..., K.

+

(IR

27

Here {(;, % denotes the k-th column of Y and the constraints enforce
consensus between the variables. The solution is obtained via intro-
duction of dual variables Uy, € R! and follows the iterative scheme
(we replace iteration indices by arrows to simplify notations)

Tk < argmin —log|Tk| 4+ Tr (Ska)

Ty

+ 2 [vech (Tu) = Fon + U B =1, K, (28)
Y argmin 7 HYH* + g Hvech (’i‘k) Y.+ UkH2 , 29
Y

Uy « Uy + vech (’I‘k) Y.
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The main advantage of the proposed ADMM technique is that both
updates in (28) and (29) have easily computed closed form solutions.
Indeed, the first order optimality conditions for the T, update target
(28) yield

pTk —T;l =p (mat (?k - Uk)) — Sk.

Take the orthogonal eigenvalue decomposition of the symmetric right-
hand side

(30)

p (mat (?k — Uk)) —Si = DkAkD{, (31)

and multiply (30) by D¥ on the left and by Dy, on the right to get
pT, — T ' = Ay, (32)

where T = DI T,D,. We can now construct a diagonal solution
of this equation by solving the p quadratic equations involving the
diagonal entries of T, to obtain

1
Ik:Z<Ak+‘/Ai+4pI>' (33)
The corresponding iteration becomes
~, 1
Ty < 2—pr (Ak + /A2 + 4pI> Dy, (34)

which is guaranteed to be a positive definite matrix.

In order to derive a closed form solution for the second iterative
step (29), we introduce the matrix singular value soft thresholding
operator. Given a matrix M with the SVD

o1 O
M=U|0 o v’ (35)
the singular values soft thresholding operator is defined as
max(o1 — €,0) 0
SE(M) —U 0 max(az —£,0) v7T.
(36)

It can be easily shown that the solution to (29) is given by
Y « S, ([Vech (TI) +U,,...,vech (TK) + UKD . (37

Note that the proposed iterative algorithm involves two stages on
each iteration. The first performs the T updates which can be done
in parallel, and the second gathers the new T values and updates
Y. ADMM algorithms are known for their rapid convergence since
the early 70-x, the details on their performance analysis, iterative
implementations, techniques of choosing the tuning parameter p and
further references can be found in [25]. In our implementation we
always used p = 1.

V. NUMERICAL SIMULATIONS

For our numerical experiment we took the banded structure model
model with p = 6 and b = 1, which implies that » = 11. The K = 50
true concentration matrices were generated in the following way. We
took a 6 x 6 matrix M with uniformly [0, 1] distributed entries on the
main diagonal and the first upper subdiagonal. Then we constructed
a symmetric M’ = M + M7 and checked whether it is positive
definite or not. If yes, it was added to the set of inverse covariances,
if not, an additional trial was taken. The regularization parameter n
fitting was achieved using the cross-validation technique. Figure 1
shows the empirical, averaged over 10% experiments, MSE-s of the
proposed basic algorithm (JICE) and its bias removing modification
(JICE_BR) as functions of n. For comparison we also plot the

108 ' ' ™
—%— JICE
—6— JICE_BR
ol —B5—ISCM |
— — - CRB
L
2} 3
S 10°; ]
10% 3=~ _ ]
10 25 50 100

n, number of samples in a group

Fig. 1. JICE algorithm performance in the banded structure case, b = 1, p =
6,1 =21, r=11, K =50.

MSE-s of the inverse SCM (ISCM), its orthogonal (with respect
to the scalar product defined as (A,B) = Tr (AB")) projection
(Proj(ISCM)) onto the known subspace structure, and the true CRB
bound given by (17). The graph demonstrates that when the number
of samples n in each of the groups is relatively small, both JICE
and JICE_BR significantly outperform the competitors. In addition,
as expected, the bias removal step improves the performance, and
approaches the performance of the projector when n becomes large.
It is worth mentioning, that the “bias removal” step does not remove
the statistical bias completely, but rather makes an attempt to achieve
this. Therefore, even after the introduction of this extra step into the
algorithm, the estimator may remain biased. Taking this into account,
it is not surprising that the corresponding empirical MSE can lie
below the CRB when the number of samples n is small.

VI. CONCLUSION

In this paper we consider the problem of joint inverse covariance
estimation with linear structure, given heterogeneous measurements.
The main challenge in this scenario is twofold. At first, the under-
laying structure is to be discovered and then it should be utilized to
improve the concentrations estimation. We propose a novel algorithm
coupling these two stages into one optimization program and propose
its efficient implementation. The main aim of our current research is
to provide tight upper bound guarantees on the performance of the
proposed technique.
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