
MAXIMUM-A-POSTERIORI ESTIMATION WITH UNKNOWN REGULARISATION
PARAMETERS

Marcelo Pereyra ∗

School of Mathematics
University of Bristol

Bristol, United Kingdom
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ABSTRACT

This paper presents two hierarchical Bayesian methods for
performing maximum-a-posteriori inference when the value
of the regularisation parameter is unknown. The methods are
useful for models with homogenous regularisers (i.e., prior
sufficient statistics), including all norms, composite norms
and compositions of norms with linear operators. A key con-
tribution of this paper is to show that for these models the
normalisation factor of the prior has a closed-form analytic
expression. This then enables the development of Bayesian
inference techniques to either estimate regularisation param-
eters from the observed data or, alternatively, to remove them
from the model by marginalisation followed by inference with
the marginalised model. The effectiveness of the proposed
methodologies is illustrated on applications to compressive
sensing using an `1-wavelet analysis prior, where they outper-
form a state-of-the-art SURE-based technique, both in terms
of estimation accuracy and computing time.

Index Terms— regularisation parameters; maximum-a-
posteriori estimation; hierarchical Bayesian inference; in-
verse problems; statistical signal processing.

1. INTRODUCTION

Bayesian inference methods have become ubiquitous in mod-
ern signal processing, machine learning, and computer vi-
sion. In particular, maximum-a-posteriori (MAP) estimation
has been adopted as a standard approach for solving many
high-dimensional inverse problems, mostly because MAP es-
timates can often be computed efficiently by optimisation. In-
deed, the development of new Bayesian models and optimisa-
tion algorithms for high-dimensional inference has received a
lot of attention in the late, leading to significant improvements
in estimation accuracy and computing time [1].
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An important aspect of MAP estimation is the selection
of the so-called “regularisation parameters” (see [2–4] for an
excellent introduction to this topic and [5] for a recent com-
prehensive literature review in the image restoration context).
These hyper-parameters specify the prior distribution defin-
ing the Bayesian model and impact strongly MAP estimation
results. Unfortunately, setting appropriate values for these pa-
rameters is generally difficult. Calibrating them a priori is
challenging because values that perform well on some train-
ing data often generalise poorly to new data. Developing
Bayesian inference techniques to adjust their value automati-
cally is also difficult, as it requires evaluating a normalisation
factor, which, for many relevant models, is computationally
intractable [6].

This paper presents two hierarchical Bayesian methods
for performing MAP inference when the value of the regu-
larisation parameter is unknown. The paper is organised as
follows: Section 2 highlights the difficulties associated with
selecting regularisation parameters and gives a brief back-
ground on Bayesian and non-Bayesian techniques. Section
3 describes the proposed methodologies, which allow either
estimating the value of the regularisation parameter directly
from the observed data, or, alternatively, removing it from the
model by marginalisation. An additional advantage of these
methods is that they can be integrated straightforwardly to ex-
isting MAP optimisation algorithms, in which the regularisa-
tion parameter is assumed to be known and fixed. In Section
4, the two methodologies are illustrated on an application to
compressive sensing of images and compared to a state-of-
the-art approach. Conclusions and perspectives are finally re-
ported in Section 5.

2. PROBLEM STATEMENT

Let x ∈ Rn be an unknown signal of interest and y an
observation related to x by a statistical model with like-
lihood function p(y|x) = exp{−gy(x)}. Suppose that
the recovery of x from y is ill-posed or ill-conditioned.
Following a Bayesian approach, we address this difficulty
by modelling x as a random vector with prior distribution
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p(x|λ) = exp{−λh(x)}/C(λ) promoting solutions with
some application-specific structural or regularity properties
(which are encoded in the sufficient statistic h(x)). This
prior is parametrised by a “regularisation” (hyper-) parame-
ter λ ∈ R+ that controls the relative weight of p(y|x) and
p(x|λ), and therefore the balance between observed and prior
information. Once p(x,y|λ) = p(y|x)p(x|λ) is properly
specified, x can be estimated, for example, by computing the
MAP estimator

x̂λ = argmin
x∈Rn

gy(x) + λh(x), (1)

which we assume to be computationally tractable and unique
(conditionally to a given value of λ).

In this paper, we assume that the value of λ is unknown,
making the estimation of x from y even more challenging.
We note that λ can impact MAP estimates significantly be-
cause the problem is not well-posed. The Bayesian frame-
work provides a number of principled strategies for estimat-
ing x without specifying the value of λ [6]. However, to
use them it is necessary to know the normalisation factor of
p(x|λ), which is given by

C(λ) =

∫
Rn

exp{−λh(x)}dx. (2)

For most models of interest, the evaluation of C(λ) is a reput-
edly intractable problem due to the integration over Rn [7].

Bayesian methods typically address this difficulty by
replacing C(λ) with an approximation; for example pseudo-
likelihood approximations [8], variational approximations
[9], and Monte Carlo approximations [10]. Of course, the
performance of these methods depends on the approximation
accuracy, which is generally difficult to assess. Non-Bayesian
methods have traditionally set regularisation parameters by
generalised cross-validation by using discrepancy criterions
(see [2,3] for a detailed analysis and connections to Bayesian
methods when h is quadratic). In particular, a very promising
approach that has regained attention lately is to set λ by min-
imising a surrogate of the mean-square-error of x̂λ (typically
a Stein’s unbiased risk estimate (SURE) [11–13]). In this
case, the performance depends mainly on the accuracy of the
surrogate, which may also be difficult to assess a priori.

3. PROPOSED BAYESIAN METHODS

This section presents two inference methods for estimating x
when the value of λ is unknown. More precisely, we propose
two hierarchical Bayesian techniques that allow either esti-
mating λ from y jointly with x, or, alternatively, removing
λ from the model by marginalisation and then estimating x
with the marginalised model. A remarkable property of the
techniques is that they are “exact”, in the sense that they use
the correct normalisation factor C(λ) without any approxi-
mation error. Also, they can be easily integrated into exist-
ing Bayesian algorithms that assume that λ is known. The

proposed techniques are useful when the regulariser h (i.e.,
the sufficient statistic of p(x|λ)) is a k-homogenous function.
This scenario arises in many applications, and comprises all
norms and pseudo-norms.

3.1. Priors with k-homogenous sufficient statistics

We say that the regulariser h in (1) is a k-homogeneous func-
tion if there exists k ∈ R+ such that

h(ηx) = ηkh(x), ∀x ∈ Rn,∀η > 0. (3)

Notice that (3) holds for most models used in modern sig-
nal image processing. In particular, all norms (e.g., `1, `2,
total-variation, nuclear, etc.), composite norms (e.g., `1− `2),
and compositions of norms with linear operators (e.g., analy-
sis terms of the form ‖Ψx‖1) are 1-homogenous. Similarly,
powers of norms with exponent q are q-homogenous. Prop-
erty (3) also holds for all models belonging to the general
framework described in [14].

A central contribution of this paper is to show that if prop-
erty (3) holds, then C(λ) takes the following form:

Proposition 3.1 If h, the sufficient statistic of p(x|λ), is k-
homogenous, then, the normalisation factor has the form

C(λ) = Dλ−n/k,

where D = C(1) is a constant independent of λ.

The proof follows straightforwardly by using the change of
variables u = λ1/kx and (3) to rearrange (2) as a product of
a function of λ and the constant D =

∫
Rn exp{−h(u)}du.

3.2. Hierarchical Bayesian inference

We are now ready to describe the proposed Bayesian infer-
ence strategies, which use Proposition 3.1 to estimate x when
λ is unknown. Following a hierarchical Bayesian approach,
we represent λ as an additional unknown quantity in our
model and assign it the gamma hyper-prior (a natural choice,
since λ plays the role of a scale parameter [15])

p(λ) =
βα

Γ(α)
λα−1 exp {−βλ}1R+(λ),

with fixed parameters α and β. When n is large, the exact val-
ues of α and β generally have little impact on the inferences;
without loss of generality we use α = 1 and β = 1 in our
experiments.

3.2.1. Joint maximum-a-posteriori estimation

A natural extension of (1) to the case of unknown λ is to com-
pute a joint MAP estimator. Suppose that (x̂∗, λ∗) ∈ Rn+1 is
a maximiser of p(x, λ|y), then

0n+1 ∈ ∂x,λ log p(x̂∗, λ∗|y),
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where 0j denotes the j-dimensional null vector and ∂sf(s∗)
the set of subgradients of a function f(s) at a point s∗ [16],
which in turn implies that

0n ∈ ∂x log p(x̂∗, λ∗|y), (4)

and that
0 ∈ ∂λ log p(x̂∗, λ∗|y). (5)

It follows from (4) that

x̂∗ = x̂λ∗ = argmin
x∈Rn

gy(x) + λ∗h(x).

Also, by developing (5) and using Proposition 3.1, we obtain

λ∗ =
n/k + α− 1

h(x̂λ∗) + β
. (6)

The values λ∗ satisfying (6) can be identified by solving a
one-dimensional root-finding problem. We emphasise at this
point that in all our experiments we observed that p(x, λ|y)
is unimodal, with only one λ∗ (and x̂∗) satisfying (6). A de-
tailed theoretical analysis of the conditions for existence and
uniqueness of λ∗ and x̂∗ is beyond the scope of this paper.

Finally, to compute x̂∗ and λ∗ we maximise p(x, λ|y)
alternatively w.r.t. x and λ with the following scheme

x(t) = argmin
x∈Rn

gy(x) + λ(t−1)h(x),

λ(t) =
n/k + α− 1

h(x(t)) + β
,

(7)

which in our experiments converged within 5 to 10 iterations.
Note that without guarantees of uniqueness, the solution of
(7) could potentially depend on initialisation, though we have
not observed this in practice.

3.2.2. Marginalisation

An alternative approach is to remove λ from the model
by marginalisation and then estimate x by maximising the
marginalised posterior. Precisely, we integrate the posterior
p(x, λ|y) w.r.t. λ and compute the marginal MAP estimator;
that is,

x̂† = argmax
x∈Rn

∫ ∞
0

p(x, λ|y)dλ,

= argmin
x∈Rn

gy(x) + (n/k + α) log{h(x) + β},
(8)

which incorporates the uncertainty about λ in the infer-
ences. To study (8), we construct the following majorant
of log{h(x) + β}, based on the concavity of the logarithm:

q(x|x0) = log{h(x0) + β}+
h(x)− h(x0)

h(x0) + β

≥ log{h(x) + β},
(9)

such that x̂† is also the unique minimiser of gy(x) + (α +

n/k)q(x|x̂†), which is a majorant of (8). By developing this
result we obtain that

x̂† = x̂λ† = argmin
x∈Rn

gy(x) + λ†h(x),

with

λ† =
n/k + α

h(x̂λ†) + β
. (10)

Again, the values λ† satisfying (10) can be identified by solv-
ing a one-dimensional root-finding problem. However, in all
our experiments we observed that p(x|y) is unimodal with
only one λ† and x̂† satisfying (10). A detailed theoretical
analysis of this property is beyond the scope of this paper.

Finally, in a manner akin to (7), we compute these values
with the iterative scheme fixed-point scheme

x(t) = argmin
x∈Rn

gy(x) + λ(t−1)h(x),

λ(t) =
n/k + α

h(x(t)) + β
,

(11)

which can be interpreted as a majorisation-minimisation algo-
rithm to solve (8) using the majorant q(x|x0) [8], or equiva-
lently as an expectation-maximisation algorithm [17]. Again,
in all our experiments (11) converged in 5 to 10 iterations.

It is worth noticing that typically λ∗ ≈ λ† because n/k �
1; thus we can expect the Bayesian estimators x̂∗ and x̂† to be
practically equivalent from an inferential viewpoint. This ob-
servation is relevant because x̂∗ arises by setting λ to its most
likely value, whereas x̂† integrates information from all pos-
sible values of λ. The fact that for large n both estimators co-
incide suggests that the joint density p(x, λ|y) becomes very
concentrated around λ∗; which is also in agreement with ob-
servations that p(x, λ|y) and p(x|y) are unimodal.

4. APPLICATION TO COMPRESSIVE SENSING

In this section, we illustrate the proposed methodologies with
an application to compressive sensing reconstruction using
an `1-wavelet analysis prior. For comparison we also report
obtained with SUGAR [13], a recent state-of-the-art SURE-
based technique that seeks to minimise the estimation mean-
squared-error (MSE), and with an oracle that knows the value
of λ that minimises the estimation MSE. To make compar-
isons fair, all methods were implemented with the same gen-
eralised forward-backward solver for (1) (we used the MAT-
LAB implementation of [13]). The methods are compared
by computing the peak signal-to-noise ratio (PSNR(x̂,x) =
10 log10(2552/‖x̂−x‖22)) and the structural similarity index
(SSIM) [18] between x and x̂.

For this experiment we suppose that an unknown image
x ∈ Rn, of size n = 512 × 512, is observed through a
noisy measurement y = Φx + w ∈ Rp of size p = n/2,
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where Φ ∈ Rp×n denotes a compressive sensing random ma-
trix and w ∼ N (0, σ2Ip) additive Gaussian noise with σ2 =
10. In a manner akin to [13], we assign x the analysis prior
p(x|λ) = exp{−λ‖Ψx‖1}/C(λ), where Ψ represents the
horizontal and vertical (but not the diagonal) components of
a Daubechies 4 wavelet transform. Notice that ‖Ψ(αx)‖1 =
α‖Ψx‖1 for all α > 0, and therefore h(x) = ‖Ψx‖1 is k-
homogeneous with k = 1. We report experiments with the
two widely used test images Boat and Mandrill.

Notice that the value of λ defining p(x|λ) remains un-
specified and will be 1) estimated jointly with x by joint max-
imisation using algorithm (7); 2) removed from the model by
marginalisation using algorithm (11); and 3) selected using
SUGAR. We note that algorithms (7) and (11) were initialised
with x(0) = ΦT (ΦΦT )−1y, and that SUGAR was imple-
mented using the prediction MSE (see [13] for more details).

Tables 1 and 2 show the values of λ, performance in-
dicators and computing times for each method and for the
two test images Boat and Mandrill. For completeness,
we also report the results obtained by least-squares estima-
tion (i.e., x̂LS = ΦT (ΦΦT )−1y), and with an oracle that
knows the optimal value of λ. We observe that the proposed
Bayesian techniques produced very good results, and that
they achieved reconstruction accuracies that are close to the
oracle performance for both images. These results are in-
teresting because they reveal that the prior p(x|λ), in spite
of being simplistic, captures enough knowledge about x to
promote values of λ that are in agreement with what we
would select by visual cross-validation (and that also lead to
excellent PSNR and SSIM performances). Tables 1 and 2
also show that SUGAR performed worse, particularly for the
Boat image where it achieved an estimation accuracy com-
parable to that of the least-squares estimate. Moreover, notice
that the Bayesian techniques were approximately four times
faster than SUGAR in both experiments. This difference in
computing time is due to the facts that: 1) the Bayesian tech-
niques converged in approximately half as many iterations as
SUGAR, and 2) the Bayesian techniques require solving (1)
once per iteration, whereas each iteration of SUGAR com-
putes (1) twice. Finally, for illustration, Fig. 1(a) shows the
Bayesian joint MAP estimate (7) corresponding to the Boat
experiment; Fig. 1(b) the estimation PSNR as a function λ;
and Fig. 1(c) the evolution of the iterates λ(t) for the two
Bayesian methods and for SUGAR.

5. CONCLUSION

In this paper, we proposed two hierarchical Bayesian meth-
ods for performing maximum-a-posteriori inference when
the value of the scalar regularisation parameter is unknown.
The methods are useful for Bayesian models with priors of
the form p(x|λ) = exp{−λh(x)}/C(λ), and for which h
is k-homogenous. This includes many important priors, in-
cluding all norms, composite norms, and compositions of

(a) Joint MAP (λ∗ = 56.4, PSNR=33.4)

(b) Estimation accuracy (PSNR) vs λ

(c) Evolution of the iterates λ(t)

Fig. 1. Compressive sensing experiment with the Boat image: (a)
Bayesian joint MAP estimate (7). (b) Estimation PSNR as a function
of λ. (c) Evolution of the iterates λ(t) for the proposed Bayesian
methods (7) and (11) (left axis) and for SUGAR (right axis).

norms with linear operators, which are 1-homogenous. A
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Table 1. Values of λ, estimation accuracy (PSNR and SSIM),
and computing times for the Boat experiment.

λ PSNR SSIM time [sec]

Joint MAP (7) 0.56 33.4 0.96 299

Marginal MAP (11) 0.56 33.4 0.96 299

SUGAR [13] 0.01 18.4 0.55 1137

Oracle 0.38 33.5 0.96 n/a

Least-squares n/a 17.7 0.52 0.04

Table 2. Values of λ, estimation accuracy (PSNR and SSIM),
and computing times for the Mandrill experiment.

λ PSNR SSIM time [sec]

Joint MAP (7) 0.20 25.3 0.87 229

Marginal MAP (11) 0.20 25.3 0.87 229

SUGAR [13] 0.10 22.9 0.80 984

Oracle 0.50 26.1 0.90 n/a

Least-squares n/a 18.6 0.22 0.04

main contribution of the paper was showing that for all these
models, the normalising factor of the prior takes the form
C(λ) = Dλ−n/k. Based on this, we developed two hier-
archical Bayesian inference techniques to estimate λ from
y jointly with x, or to remove λ from the joint model by
marginalisation. The proposed methodologies were finally
illustrated on an application to compressive sensing using a
`1-wavelet analysis prior and compared to the state-of-the-art
SURE-based technique SUGAR [13].

It is worth emphasising that, although this paper fo-
cused exclusively on MAP estimators, knowledge of C(λ)
enables the complete spectrum of Bayesian analysis tech-
niques, including other estimators, credibility/confidence
sets, Bayesian hypothesis tests, etc. Similarly, our results are
also useful for other types of inference algorithms, for exam-
ple expectation-maximisation, variational Bayes, and Markov
chain Monte Carlo [19]. A detailed theoretical analysis of the
Bayesian estimators and optimisation algorithms described in
Section 3 is currently under investigation. Future works will
also focus on the development of empirical Bayesian tech-
niques that set λ by maximum likelihood estimation [4, 20],
and on the application of the proposed techniques to other
canonical inverse problems such as image deconvolution.

Finally, preliminary experiments (not reported in this pa-
per) suggest that Bayesian techniques generally outperform
SURE methods when the projection and prediction MSEs are
poor surrogates of the true MSE (e.g., for problems involv-
ing rank-deficient observation operators). On the other hand,
SURE techniques perform better for denoising problems. We
do not see Bayesian and SURE techniques as competitors; in-

stead we hope and anticipate that future methods will use both
approaches in a complementary manner.
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