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ABSTRACT

In recent years, auxiliary sensors have been employed to im-

prove the robustness of emerging hands-free speech commu-

nication systems based on air-conduction microphones, es-

pecially in low signal-to-noise-ratio environments. One such

sensor, based on ultrasound, captures articulatory movement

information during speech production and has been used in a

voice activity detector and also shown to improve the perfor-

mance of speech recognizers. However, studies thus far have

tested such sensors in ideal scenarios where only relevant ar-

ticulatory information was assumed to be present. Therefore,

in this paper the robustness of such sensors in realistic scenar-

ios is investigated. Challenges arising from non-articulatory

movements and other environmental influences captured by

ultrasound sensors are discussed and strategies for their detec-

tion presented. Finally, the proposed strategies are evaluated

in an ultrasound-based voice activity detector.

Index Terms— Ultrasound, articulation, robustness,

voice activity detection, Doppler shift

1. INTRODUCTION

Speech communication systems traditionally use one or more

air-conduction (AC) microphones to capture and process

speech signals, e.g. for speech enhancement. Such systems,

however, are susceptible to background noise and reverber-

ation which corrupt the captured speech signal, reducing

intelligibility and listener comfort. While a number of meth-

ods have been developed to address this problem and enhance

the degraded speech signal [1], their performance depends

on the application and environment in which they are used,

and a general solution to this problem does not exist. This

is especially true for low signal-to-noise ratios (SNR) and

non-stationary background noise.

Recently, researchers have started employing numerous

noise-robust sensors in speech communication systems, such

as ultrasonic sensors, which are immune to environmental

(audible) noises and reverberation. Unlike AC microphones,

∗This project has been funded with support from the European Commis-
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when an ultrasonic sensor is aimed at a user’s mouth it cap-

tures articulatory movement information during speech pro-

duction which is coded as Doppler shifts in the reflected ultra-

sound (US) signal. In contrast to sensors such as electromyo-

graphs [2] or bone-conduction microphones [3], US sensing

is also non-intrusive, i.e. no skin contact is required. Finally,

unlike video [4], US sensing does not raise privacy concerns

since no sensitive user information is recorded.

The articulatory information provided by US sensors has

been successfully employed in speech-based systems. In [5],

a US-based lip motion detector was developed to augment the

performance of a digit recognition system. A similar sensor

was also used in combination with a standard AC microphone

for speech recognition systems in [6–9] leading to reductions

in word error rate of up to 29 % for a digit recognition task. A

speech or voice activity detector (VAD) based on US Doppler

sensing was implemented in [10,11] and it was shown to out-

perform an AC-based VAD in SNRs below 10 dB. A US-

based VAD method which relies on resonance patterns in the

US reflection was developed in [12].

In the aforementioned studies, US sensor systems were

evaluated under the assumption that only articulatory move-

ments are captured, allowing these systems to leverage the

noise-immunity properties of such sensors. However, in prac-

tice, this assumption is unrealistic due to user movements

and/or other interferences. Thus, the work described here fo-

cuses on improving the robustness of US Doppler sensing in

real-world applications. In particular, we investigate possible

events that can corrupt the captured US signal and how these

can degrade the captured articulatory information. We then

present US features to detect the corresponding artifacts, and

implement a US-based VAD as an evaluation framework.

2. ULTRASOUND DOPPLER SENSING

2.1. Articulatory information acquisition

A captured US reflection may contain one or more spectral

components outside of the emitted carrier signal’s frequency

due to the Doppler effect, which describes the change in fre-

quency of a sound wave after being reflected from a moving
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object. The frequency of this reflection, fr, is given by

fr =
c+ v

c− v
fc ≈

(

1 +
2v

c

)

fc = fc +∆f, (1)

where fc, v, c and ∆f denote the frequency of the emitted

carrier signal, the velocity of the moving object, the speed of

sound, and the Doppler shift resulting from the movement, re-

spectively [13]. The velocity v is assumed to be positive (neg-

ative) for movements towards (away from) the sensor. Only

movements with vector components parallel to the US beam

cause Doppler shifts.

For speech communication systems, the US beam is

aimed at the speaker’s face during speech production. Un-

der ideal circumstances, Doppler shifts in the reflected sig-

nal only contain information about the velocities of various

speech articulators such as the lips and cheeks. For this case

the reflected signal can be modeled as

ur,id(t) =

Na
∑

i=1

gia(t) cos
{

2π
(

fc +∆f i
a (t)

)

+ φi
a(t)

}

+ rc(t),

(2)

where Na denotes the number of moving articulators and

∆f i
a (t) denotes the Doppler shift resulting from the i-th mov-

ing articulator. Associated with the i-th articulator is the

phase term φi
a(t) which depends on the articulator’s distance

to the sensor and the gain factor gia(t) which, in addition to

the distance from the sensor, depends on its surface area. The

term rc(t) denotes the reflections of the carrier signal off of

fixed objects in the background.

2.2. Extended ultrasound reflection model

In practice, the emitted US beam has a given beamwidth, and

is not solely focused on the speaker’s face. Therefore, de-

pending on this beamwidth and the speaker’s distance to the

sensor, any Doppler shifts associated with body movements

or movements in the background within the US beam may be

captured by the receiver. This is especially true for hands-

free applications where the user is sitting at a larger distance

from the device. Wideband sound sources which exhibit en-

ergy in the US range may also corrupt the received signal. To

account for all these non-articulatory contributions, the reflec-

tion model in (2) is extended to yield

ur(t) =

Na
∑

i=1

gia(t) cos
{

2π
(

fc +∆f i
a (t) + ∆fbc(t)

)

+ φi
a(t)

}

+

Nb
∑

j=1

g
j
b(t) cos

{

2π
(

fc +∆f
j
b (t)

)

+ φ
j
b(t)

}

+ rc(t) + ru(t).

(3)

In this model, two types of body movements are distin-

guished: connected and independent. Connected body move-

ments involve body parts connected to the articulators, e.g.,

head and torso. When such movements occur during speech

activity, the velocity of the body part and that of the i-th ar-

ticulator are added vectorially to produce a shifted articulator

velocity relative to the sensor. These type of movements are

represented by the Doppler shift term ∆fbc(t) which further

shifts the original Doppler term, ∆f i
a (t), associated with the

i-th articulator in (3). Independent disturbances represent the

movement of objects or body parts which are not directly

connected to the articulators. These produce Doppler shifts

that are superimposed on the articulators’ Doppler compo-

nents and can irrecoverably mask articulatory information

during speech activity.

The second summation term in (3) includes the effects

of disturbances associated with independent as well as con-

nected movements. Nb denotes the total number of moving

surfaces and ∆f
j
b (t) denotes the Doppler shift in the US sig-

nal corresponding to movement of the j-th surface. The gain

and phase terms g
j
b(t) and φ

j
b(t) are associated with the j-

th surface and depend on its area and proximity to the sen-

sor while the last term, ru(t), models the leakage of high-

frequency sounds in the system environment into the US re-

ceiver. Most naturally occurring sounds exhibit a fall off in

the high-frequency portion of their spectra due to absorption,

especially within the narrow US bandwidth considered here

(39 kHz - 41 kHz). However, impulse-like sounds such as

knocks or clicks may contain sufficient energy to corrupt the

US reflection.

3. FEATURES FOR ROBUST DOPPLER-BASED

SPEECH PROCESSING

As discussed in the previous section, different movement

types and broadband sounds can corrupt the articulatory

movement information contained in a reflected US signal.

Current systems that make energy-based VAD decisions or

extract Doppler-shift features related to articulation typically

rely on analyzing frequency bands around the US carrier

frequency. For these systems the presence of such US noise

can render them unreliable. Therefore, to properly track the

desired articulatory information in both time and frequency,

a number of features are proposed in this section.

Connected body movements offset the Doppler shifts as-

sociated with articulator movements, and additionally shift a

significant portion of the emitted US energy in frequency, de-

pending on the connected body parts involved in the move-

ment. To detect and track these frequency shifts, a maximum

tracker is defined,

klmax = argmax
k

∣

∣U l(k)
∣

∣ , (4)

where U l(k) is the FFT of the l-th frame, and k denotes the

frequency bin index. For the ideal situation in (2) or in sit-

uations where the shifted US carrier energy is still less than
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the energy of rc(t) in (3), the output of the tracker is kc cor-

responding to the original carrier frequency fc. Unlike other

measures such as center of gravity, the maximum tracker pro-

vides a more accurate estimate of the carrier shift.

Movement is detected for a given frame if klmax deviates

significantly from the original carrier frequency bin kc. In ad-

dition to a Doppler shift, a spread in carrier bandwidth around

klmax can also be observed as a result of certain body move-

ments. This spectral spread is attributed to the fact that the

human body is not rigid or perfectly parallel to the US sensor

during natural movement, resulting in a non-uniform spatial

distribution of velocity components. Therefore, in order to

correctly isolate and recover parts of the shifted articulatory

information, not only the Doppler shift corresponding to klmax,

but also this spread must be correctly estimated.

Here, the carrier spread is estimated using knowledge

about the velocity of the body movement estimated from (4)

– the faster the movement, the higher the maximum change,

|klmax − kc|, and the higher the spread. First, only frequency

bins whose energy is sufficiently lower than the maximum

energy are included in subsequent analysis steps. This bin

threshold is determined by a pre-defined base difference Eb

and the difference in the total energy in the analyzed frame

l and a smoothed version of it, T l
c = Eb + El

tot − Ētot (in

dB). The comparison to a smoothed version of the total frame

energy Ētot is utilized to react to changes in the position of the

speaker relative to the sensor, e.g., if the speaker moves closer,

the total frame energy increases as more of the US signal is

reflected off the speaker, increasing Tc. Only bins with energy

Tc dB below the maximum are used for the VAD decision re-

sulting in a bin threshold klth. Furthermore, klth can be adapted

based on the maximum shift as k̂lth = klth +g(|klmax −kcarrier|),
where g is a function that depends on the application and

required VAD sensitivity.

The aforementioned scheme might still generate false

alarms due to independent body and background movements

which produce sufficient energy in a large bandwidth around

the carrier frequency – in this case the maximum will not

necessarily deviate from kc. Hence, an additional detection

strategy based on the spectral symmetry of the US reflection

signal is applied. For this measure, the energy in frequencies

above and below the carrier are compared for each frame l,

sl =
min(

∑

k<kc−ǫ

∣

∣U l(k)
∣

∣ ,
∑

k>kc+ǫ

∣

∣U l(k)
∣

∣)

max(
∑

k<kc−ǫ |U
l(k)| ,

∑

k>kc+ǫ |U
l(k)|)

, (5)

where 0 ≤ sl ≤ 1 and ǫ is used to determine how many bins

around the carrier to ignore in the symmetry calculation. The

reason behind this is that the emitted US signal is not perfectly

centered at the carrier frequency but smeared onto neighbour-

ing bins, even without any movement. The motivation for

the symmetry measure is that for certain FFT window lengths

(above 10 ms), regions in the US reflection that correspond

to speech exhibit a high level of symmetry around the carrier

frequency (sl > Slow), unlike regions corresponding to body

and background movements. For impulse-like noise events,

the energy is evenly smeared out across the US spectrum and

sl is close to unity. However, even though the US spectrum

shows high levels of symmetry during speech activity, the cor-

responding value of sl is unlikely to exceed Shigh = 0.9 in

practice, enabling the system to differentiate such noise from

speech. These thresholds are set depending on the applica-

tion. A higher Shigh enables fast reactions and more accurate

detection but might cause misclassifications, as the symme-

try can drop during normal articulatory movements. A low

threshold, however, may detect artifacts too late, for example

after a VAD has already triggered a speech detection decision.

4. EXPERIMENTAL RESULTS

4.1. Setup

An ultrasound sensor consisting of a US receiver (Prowave

400SR100) and a US transmitter (Prowave 400ST100) with

a 40 kHz carrier frequency and a 72◦ beamwidth, was con-

structed. This sensor was aimed at a speaker seated at a dis-

tance of 50 cm away and directly facing the sensor during

all recordings. The sensor’s vertical position corresponded to

the height of the speaker’s mouth. At this interaction distance,

which is typical for most hands-free audio communication de-

vices, the sound pressure level of the transmitted ultrasound

signal was measured to be approximately 80 dB (SPL). To

reduce signal leakage from the US transmitter into the re-

ceiver, the inter-sensor spacing was set to 10 cm.

All recordings were made in a moderately reverberant

room (T60 = 400 ms). A sampling frequency of 96 kHz
was used during the recordings while the speaker was reading

from a list of Harvard sentences. The received US signal

was downmixed to 4 kHz, lowpass filtered with a cut-off at

8 kHz, and resampled at 16 kHz for further processing. The

reflections were then analyzed using 64 ms Hann-windowed

frames with 50% overlap.

4.2. Evaluation framework

A VAD, or speech detector, is an integral part of many speech

processing applications that provides information on whether

speech is present or not. We used a US-based VAD similar

to that in [10] and [11] to evaluate the proposed features for

robustness improvement.

To detect whether speech is present in a given frame, the

total energy, Ea(t), in the frequency bins deemed to contain

possible articulatory information is compared to a threshold

Ts. In [10] and [11] an adaptive threshold was defined and

used for this purpose. Here, we define a different adaptive

threshold, which is based on the the minimum statistics esti-

mator approach in [14]. The minimum articulatory energy

over the last L s of the US signal is used as the baseline

Emin(t). The threshold is then defined as Ts = Emin(t) + Es,
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Fig. 1. US-based VAD performance with and without additional robustness features for various disturbance scenarios using data

from one speaker. The five rows from top to bottom plot the: US reflection spectrogram; carrier spread detection; energy in the

region of interest with the adaptive VAD threshold; symmetry feature value with fixed symmetry thresholds; and the original

AC signal, the basic US-based VAD output (thin line) as well as the VAD output with artifact detection (thick line).

where Es is a fixed, predefined dB value. A speech presence

decision is then made in case the articulatory energy in the

current frame exceeds Ts. Furthermore, a hangover scheme

is applied to prevent mid-speech clipping in case speech is

misclassified as silence.

This basic VAD approach, as well as the approaches in

[10] and [11] only exhibit a high performance in the ideal case

modeled by (2). Therefore, it is expected that the features

proposed in Sec. 3 will improve the detection accuracy for

various movements and broadband noise. For that purpose,

the recording was divided into the four time segments shown

in Fig. 1. The first segment corresponds to the ideal sce-

nario where the speaker remains still and the sensor captures

only articulatory information. In the second segment, the

speaker makes connected upper-body movements by swaying

towards and away from the sensor (roughly ± 20 cm). Inde-

pendent body movements related to the speaker consisting of

arm movements in front of the sensor were made in the third

segment. Additionally, an impulse sound corresponding to a

finger snap was generated at 38 s. Finally, in the last time seg-

ment, independent disturbances generated by another person

walking in the background of the speaker were recorded.

In the following, the VAD parameters are set to L =
5 s and Es = 5 dB. A moving average filter of order 5 is

used to smooth the articulatory energy contour and a hang-

over scheme is applied during the VAD decision in which the

output is smoothed over the last 5 frames for speech to silence

transitions. The results of the baseline and proposed VAD are

shown in the last row of Fig. 1. To quantify the behaviour of

the proposed features, Fig. 1 also plots the articulatory energy

El
a and the symmetry measure sl in the third and fourth rows,

respectively. The articulatory energy in the ideal case and the

symmetry measure exclude the first three bins around the car-

rier with ǫ = 3. The high and low limits for this measure, Slow

and Shigh , are set to 0.4 and 0.9, respectively. A frequency

range of up to 1 kHz above and below the carrier (3 kHz -

5 kHz for the downmixed signal) is considered to calculate

energy values El
low and El

high where El
a = max (El

low, E
l
high).

The second row of Fig. 1 highlights the detected carrier spread

in the original US spectrogram which is left out of the artic-

ulatory energy computation as well as the output of the max-

imum tracker defined by (4). For this spread estimation Eb

was set to 35 dB.

4.3. Results and discussion

From the VAD decision results in the bottom row of Fig. 1, the

proposed robustness features for VAD clearly result in an im-

proved accuracy for the various scenarios in the four time seg-

ments. In the ideal situation, with no movements present, both

VADs display the same level of performance as expected. For

the second column, where the user generates connected body

movements, the basic energy based VAD continuously detects

speech after the first onset. This is due to the fact that the basic

VAD assumes that any energy in frequency bins outside of the

original carrier frequency band (|k − kc| > ǫ) corresponds to

articulatory movements. With the proposed maximum tracker

and carrier spread estimator, the highlighted regions in the

spectrogram displayed in the second row are excluded from
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the calculation of Ea which leads to a significant reduction in

false alarms. Furthermore, a compensation of the movement

artifacts and recovery of parts of the articulatory information

is possible. However, it is important to note that in some cases

a large carrier spread can completely mask articulatory infor-

mation, which can lead to missed speech detections or clip-

ping in the VAD decision. This can be seen at the end of

the second utterance between 22 s and 26 s where the VAD

misses the last portion of the sentence. The values of Es and

Eb can be adjusted to increase sensitivity to movements at the

cost of an increased number of false alarms.

Robustness to independent movements as well as impulse-

like noise is displayed in the third column of Fig. 1. While

the energy El
a exceeds the adaptive threshold on numerous

occasions, the symmetry measure is able to correctly rule out

these US artifacts as shown in the fourth row, in particular

for the impulse generated around the 38 s mark. This is in

contrast to the baseline VAD which detects these movements

and noise as speech. In the last column of Fig. 1, independent

movements in the background lead to artifacts around the

original carrier frequency. Due to the larger distance at which

these movements occur, their contributions are difficult to

differentiate from articulatory information. This can lead to

an increase in the estimated articulatory energy and trigger

the VAD to detect speech. Such artifacts can be detected

using the symmetry measure which leads to a decreased false

alarm rate as shown in the bottom row of Fig. 1.

5. CONCLUSION AND OUTLOOK

In this work, the robustness of a US sensor in a hands-free

speech communication system is investigated based on a

model of the captured US signal. Practical challenges re-

lated to artifacts caused by non-articulatory movements and

broadband noise captured by the sensor were discussed and

their corresponding artifacts analyzed. A set of features was

developed to detect these artifacts, and finally evaluated in

a voice activity detection framework. The comparison be-

tween US-based VADs with and without their employment

in various usage scenarios showed that the implemented fea-

tures considerably improve robustness and overall accuracy.

Although a VAD was used for evaluation purposes, the pro-

posed strategies remain valid and are applicable for many

systems incorporating US sensors. Finally, with the proposed

methods, future research will look at extracting more com-

plex articulatory features from the US reflection signal and

link these to traditional acoustic features extracted from a

microphone.
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