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ABSTRACT

Asynchronous event-based cameras use time encoding to

code the pixel intensity values. A time encoding of an input

pattern generates a random stream of asynchronous events.

An event is defined as a pair containing a timestamp and the

variation sign of the input signal since the last emitted event.

The goal of this paper is the recognition of the input pattern

among a set of several known possibilities from the obser-

vation of the event stream. This paper proposes a statisti-

cal model of the random event stream based on the physi-

cal model of the event-based camera. It also calculates the

optimal Bayes classifier which recognizes the input pattern.

The numerical complexity of the classifier is rather low. The

Bayes risk, which measures the performance of the classifier,

is numerically evaluated on simulated data. It is compared

to the mean number of events, which entails the power con-

sumption of the camera, exploited to take the decision.

Index Terms— Time encoding, Statistical classification,

Event-based camera, Bayes risk.

1. INTRODUCTION

Asynchronous event-based cameras, also called neuromor-

phic cameras, are beginning to provide a paradigm shift in

the current approaches to address image and video process-

ing [1–5]. Contrary to conventional frame-based image ac-

quisition and processing technologies, event-based dynamic

vision sensors provide a novel and efficient way for encod-

ing light and its temporal variations by registering and trans-

mitting only the changes at the exact time at which they oc-

cur [4,6,7]. Event-based cameras sense and encode the spatial

locations (addresses) and times of changes in light intensity

at the pixel level [1]. Asynchronous, continuous-time sig-

nal coding and processing based on nonuniform sampling has

shown (e.g., [8] and [9]) that such a sampling approach al-

lows to recover some information about the sampled signal.

Consequently, event-based cameras have a very high tempo-

ral resolution exceeding the speed of most conventional frame

based cameras and permit to save power. This novel paradigm

of visual data acquisition calls for a new methodology in order
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to efficiently process the sparse event-based image informa-

tion without sacrificing its beneficial characteristics [10, 11].

Event-based sensors allow a radical new variety of pro-

cessing [1, 12, 13]. Asynchronous event-based cameras use a

time encoding [4, 14, 15] of the pixel log-intensities xk(t) for

t > 0 and all k = 1, . . . ,K where K is the number of pixels.

Hence, the input time-varying scene is represented as a ran-

dom sequences, called the event stream, of events (tk,j , yk,j)
where (tk,j), j ∈ N is a sequence of strictly increasing times

and yk,j ∈ {−1, 1} is the polarity of the event. Many mod-

els [16] exist for encoding a signal in the time domain. This

paper deals with the level crossing sampling which remains

one of the most used techniques, especially with event-based

sensors [11]. Most efforts in the literature have been devoted

towards the design of reconstruction algorithms and filtering

methods [10, 11, 14, 17–19] for bandlimited signals. One of

the main lack of existing works is the absence of results about

statistical models and classification of event streams.

The contributions of this paper are twofold. First, the

event stream is modeled as a sequence a random events. The

randomness of the event stream is due to the noise naturally

present inside the neuromorphic sensor and coming from the

photoreceptors and electronic circuits. Second, we propose

an optimal Bayes classifier which processes the random event

streams in order to identify an input pattern. The paper is

organized as follows. Section 2 describes the asynchronous

event-based camera and proposes a statistical model of the

event streams. Section 3 derives the optimal Bayes classifier

to classify some patterns from random event streams. Sec-

tion 4 proposes a numerical study of the classifier. Finally,

Section 5 concludes this paper.

2. EVENT-BASED CAMERA

2.1. Event-Based Sampling

The goal of this section is to model the event stream produced

by the event-based sampling of an input time-varying scene in

order to classify the pattern occurring inside the scene. The

pattern classification process is described in Fig. 1. An event

is defined as a couple composed of a timestamp and a polarity

at a given pixel coordinate. The polarity is a sample related to

the luminance signal variation captured at the level of a sin-
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Fig. 1. Pattern classification from the event-based sampling of

an input time-varying scene.

gle pixel along with its time of acquisition. Let us introduce

the event-based sampling in continuous time. The discrete

time model will be modeled in Subsection 2.2. Let x(t) be

a continuous time signal we want to sample. The k-th ran-

dom event is a pair (tk, y(tk)) where each sample is acquired

according to the generic rule

x(tk+1) = x(tk) + εk +∆ y(tk+1) (1)

where ∆ is the known sampling step and k is a positive inte-

ger. This means that each sample x(tk+1) is determined by

adding or subtracting a constant positive term ∆, up to the

noise εk, to the previous sample x(tk). The noise εk is diffi-

cult to model directly but it is implicitly taken into account in

the statistical distribution of the events given in the following.

tk−1 tk tk+1

x(t)

t

ε
k
±
∆

Fig. 2. Random level crossing sampling of x(t).

Fig. 2 shows an example of signal and resulting sampling

points in time. This is a random level crossing sampling

which is very close to the conventional level crossing sam-

pling, also called send-to-delta or Lebesgue sampling [20],

except that the difference between two samples is random.

2.2. Random Event Model

A typical event-based sensor, as the Dynamic Vision Sen-

sor [4], models the transient responses of the retina [21]. A

neuromorphic vision system is composed of sensors which

are sensitive to the light contrast of the input scene. Each

pixel memorizes the log-intensity of the input after each event

and emits a new event when the input is significantly differ-

ent from the memorized log-intensity. More formally, let us

assume that the input pattern is characterized by a spatiotem-

poral intensity function (u, v, t) 7→ s(u, v, t) where (u, v) be-

longs to a compact D ⊂ R
2 and t ∈ [0, T ] where T is the

duration of the acquisition in microseconds. The set of pixels

pk = (uk, vk) corresponds to some sampling points of D for

k = 1, . . . ,K . Each pixel pk is associated to a photoreceptor

which is sensitive to the log-intensity xk(t) = ln Ik(t) of the

input scene where Ik(t) > 0 is the input photocurrent.

The neuromorphic vision sensor works in discrete time

with a typical time resolution of 1 µs. Let {tk,1, . . . , tk,nk
}

be the instants of [0, T ] where the event-based sensor emits

the events associated to pixel pk. An event produced by pixel

pk is a couple ek,j = (tk,j , yk,j) where tk,j is the time of

the j-th event and yk,j is its polarity, say −1 (OFF event) or

+1 (ON event). By convention, tk,0 = 0 for all pixels k. At

discrete time t ≥ tk,j , the variation of the log-response with

respect to the memorized value at time tk,j is given by

δk(t, tk,j) = xk(t)− xk(tk,j) + ξk(t)

= ẋk(t, tk,j) + ξk(t) (2)

for all j ≥ 1 where ξk(t) is a noise. The non-random dif-

ference ẋk(t, tk,j) = xk(t) − xk(tk,j) is called the tempo-

ral contrast after the j-th event. The random temporal con-

trast δk(t, tk,j) is then compared to two non-random thresh-

olds ∆+ and ∆− satisfying ∆− < ∆+. It is assumed that

∆+ = ∆ = −∆− and that these thresholds are nominally

the same for all the pixels. If the difference exceeds the upper

threshold ∆+, the sensor emits an ON event; if it is below the

lower threshold ∆−, the camera emits an OFF event; if the

value is between the two thresholds, there is no event. After

emitting the j + 1 event, the input value xk(tk,j+1) is saved

in the neuromorphic sensor in order to compute δk(t, tk,j+1)
for the next event. Strictly speaking, the thresholds ∆− and

∆+ are random since they depend on the electronic system.

To simplify the model, the randomness of ∆− and ∆+ are not

considered in this paper. The refractory period of each pixel

and the background ON activity described in [4] are ignored.

Experiments in [4, 7, 22, 23] shown that ξk(t) is an ag-

gregate of many sources of noise: photonic noise, contrast

threshold, uniformity of response, etc. These experiments

evaluate contrast sensitivity by measuring the event response

probability as a function of increasing contrast at identical

initial illuminance. In an ideal noise-free world, this would

result in a step (0% to 100% probability with infinite slope)

at a given threshold contrast. In reality, noise turns the ideal

step into an“S”-shaped curve (see Fig. 14 in [7]). Hence, the

noise ξk(t) can be approximated by a Gaussian white noise

such that {ξk(t), 1 ≤ k ≤ K, 1 ≤ t ≤ T } is a family

of independent and identically distributed variables satisfying

ξk(t) ∼ N (0, σ2) where σ > 0 is the standard-deviation of

the noise. It is assumed that the sensor is well calibrated, so

σ is known.
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2.3. Statistical Event Stream Model

Let pk,j+1(t,−1), resp. pk,j+1(t,+1), be the probability that

the j + 1 event is an OFF event, resp. an ON event, emitted

at time t by pixel pk. The probability of non-emitting a j + 1
event at time t at pixel pk is pk,j+1(t, 0). Let us describe the

probability distribution of the random event stream for pixel

pk. The event stream of pixel pk is a vector, denoted Sk, of

nk couples (tk,j , yk,j):

Sk = {(tk,j , yk,j), 1 ≤ j ≤ nk} .

The probability of the stream Sk is given by

Pr(Sk) = Bk,T

q=nk
∏

q=1

Ak,q (3)

where Ak,q is the probability of the sequence of events start-

ing from time tk,q−1 + 1 and finishing to time tk,q given by

Ak,q = pk,q(tk,q, yk,q)

tk,q−1
∏

i=tk,q−1+1

pk,q(i, 0) (4)

and Bk,T is the probability of non-emitting events after the

last event emitted at time tk,nk
:

Bk,T =

T
∏

ℓ=tk,nk
+1

pk,nk+1(ℓ, 0). (5)

These equations underline that the absence of events in the

stream is also a source of information. Indeed, the silence

between two events, which corresponds to the product over

index i in (4), depends on the two events limiting this silence

period. The event stream for all the pixels is

SK
1 = {Sk, k = 1, . . . ,K} .

Let S be the set of all event streams over [1, T ].
Since the noise has a Gaussian distribution, the probabili-

ties of emitting and non-emitting an event are given by:

pk,j+1(t, 0) = Pr(∆− ≤ δk(t, tk,j) ≤ ∆+) =

Φ
(∆+ − ẋk(t, tk,j)

σ

)

− Φ
(∆− − ẋk(t, tk,j)

σ

)

, (6)

pk,j+1(t,−1) = Pr(δk(t, tk,j) ≤ ∆−)

= Φ
(∆− − ẋk(t, tk,j)

σ

)

, (7)

pk,j+1(t,+1) = Pr(δk(t, tk,j) ≥ ∆+)

= 1− Φ
(∆+ − ẋk(t, tk,j)

σ

)

, (8)

where Φ(·) is the cumulative distribution function of the stan-

dard univariate normal distribution. We have pk,j+1(t, 0) +
pk,j+1(t,−1) + pk,j+1(t,+1) = 1 for all t ≥ tk,j . It is im-

portant to note that the probability of the j+1-th event is only

conditioned by the j-th event, not by the previous events.

3. OPTIMAL BAYES CLASSIFIER

The observation model shows that the event stream model (3)

depends on the input signal, also called the input pattern,

X = {xk(t), k = 1, . . . ,K, 1 ≤ t ≤ T } .

Let us assume that X belongs to a set P = {X1, . . . , Xm}
of m known input patterns. Let us suppose that the neuro-

morphic sensor is observing the pattern Xθ. Let Prθ(S
K
1 )

the probability of random stream SK
1 when the input pattern

is Xθ. It is assumed that each pattern occurs with the same

probability, i.e., the prior probability is qθ = 1/m for each

pattern Xθ. A classifier is a function φ : S 7→ {1, . . . ,m}
such that pattern Xθ is chosen when φ(SK

1 ) = θ. Under

the above mentioned assumptions, it makes sense to seek the

Bayes classifier φ∗ which minimizes the Bayes risk R(φ):

R(φ) =
1

m

m
∑

θ=1

(1 − αθ(φ)), (9)

where αθ(φ) = Prθ(φ(S
K
1 ) = θ) is the probability of correct

recognition of Xθ. Hence, as described in [24], the Bayes

classifier φ∗ is given by

φ∗(SK
1 ) = arg max

1≤θ≤m
Prθ(S

K
1 )

= arg max
1≤θ≤m

K
∑

k=1

ln Prθ(Sk) (10)

where Prθ(Sk) is given in (3) in the case X = Xθ. The

derivation of (10) is based on the statistical independence of

the pixels. It is important to note that the randomness of the

pixels is due to the noise ξk(t), not to the input pattern struc-

ture X .

4. NUMERICAL EXPERIMENTS

This section illustrates the performance of the Bayes classifier

on simulated data. We consider three rotating input geomet-

ric patterns as shown in Fig. 3: a disk (with label θ = 1), a

triangle (θ = 2) and a square (θ = 3). The geometric pattern

is rotating over a constant level background.

Disk Triangle Square

Fig. 3. Geometric patterns which are rotating over a white

background to produce the event stream.

The simulation lasts 1 ms, hence T = 1000 µs. Each im-

age is composed of 64× 64 pixels. The pixel value of the ge-

ometric pattern is 1 whereas each background pixel takes the
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Fig. 4. Event stream produced by the rotating disk. The blue

cross, resp. red plus, signs represent ON, resp. OFF, events.

value 0 (it is a binary pattern). The geometric pattern makes 2
complete rounds during the observation period. The rotation

is really fast but we could slow down the angular velocity and

increase T to be more realistic. We prefer to use a small T in

order to save computation effort, i.e., in order to minimize the

number of samples to process. The numerical complexity of

the Bayes classifier is rather low but the number of samples,

especially during the event generation, could be huge since

the time resolution is 1 µs. The event stream SK
1 is computed

as modeled in Subsection 2.2. A typical event stream for the

rotating disk is shown in Fig. 4 with ∆+ = −∆− = 0.5 = ∆
and σ = 0.1. We can see the rotating disk and many noisy

events occurring arbitrarily in space and time.
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Fig. 5. Bayes risk and mean number of events as a function of

the threshold ∆.

The Bayes risk is numerically evaluated with a Monte

Carlo simulation. For each pattern, we generate 100 random

streams of 100 µs following the model describing in Subsec-

tion 2.2 for 9 values of ∆ starting from 1 to 5 with a step in-

crement 0.5. The standard deviation satisfies σ = ∆/4. The

simulation duration is decreased to 100 µs because the per-

formance of the classifier is too high (the Bayes risk is close

to 0) when there is a large number of events. The Bayes clas-

sifier φ∗ of Section 3 is computed for each random stream by

exploiting all the events in the stream, hence it exploits all the

pixels during the full simulation duration. The error probabil-

ities 1 − αθ(φ
∗) are estimated for each pattern θ ∈ {1, 2, 3}.

The error probabilities are estimated by dividing the number

of classification errors over the total number of tested ran-

dom streams. The value of the Bayes risk is shown in Fig. 5.

As expected, the Bayes risk is increasing as ∆ is increasing.

As a matter of fact, when the threshold ∆ is increasing, the

number of events is decreasing, hence the sensibility of the

event-based sensor to the pattern is decreasing.

For each value of ∆, we also compute the mean number

of events extracted from the full family of random streams

including all the patterns and all the pixels. The mean number

of events for a stream duration of 100 µs is plot in Fig. 5. As

underlined previously, we clearly see that the mean number

of events is decreasing as the threshold is increasing. So there

is a natural balance between the Bayes risk and the number of

events. Saving energy to process the data involves to increase

the threshold of the sensor and, consequently, to reduce the

classification performance.

5. CONCLUSION

This paper proposes a statistical model of random event

streams and the Bayes classifier derived from this model. The

resulting classifier has a more complex structure than conven-

tional classifier exploiting frame-based video. However, this

is compensated by the fact that event-based cameras are sav-

ing power. Future work will apply the Bayes classifier to real

data.
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