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ABSTRACT

In this paper we develop a variational Bayes algorithm for

the adaptive estimation of time-varying, group sparse signals.

First, we propose a hierarchical Bayesian model that captures

the sparsity structure of the signal. Sparsity is imposed by a

multivariate Laplace distribution, which is known to be the

Bayesian analogue of the adaptive lasso. Sparsity structure

is then expressed via a novel generalized inverse Gaussian

Markov chain, defined on the parameters of the Laplace distri-

bution. The conjugacy of the model’s prior distributions per-

mits the development of an efficient online variational Bayes

algorithm that performs inference on the model parameters.

Experimental results verify that capturing sparsity structure

leads to improvements on estimation performance.

Index Terms— online inference, variational Bayes,

Markov random field, generalized inverse Gaussian distri-

bution, group sparsity

1. INTRODUCTION

In recent years, advances in the area of compressive sensing

have sparkled new interest in almost every aspect of modern

signal processing theory, including, adaptive signal estima-

tion. The challenge here is to adaptively estimate time varying

signals that exhibit sparsity. Scarce research attempts have

also been made to the direction of estimating varying signals

that are group sparse, which is the case studied in this paper

too.

Actually, the development of adaptive estimation tech-

niques for time-varying group sparse signals is driven by

group-lasso based techniques. In this realm, mixed norms are

utilized, such as the ℓ1,∞ or the ℓ1,2 norm, that are known

to penalize signal coefficients in a “group-wise” manner. In

[1], an ℓ1,∞ norm regularizer is incorporated in the adaptive

setting of the recursive least squares (RLS) algorithm. A

deterministic group sparse RLS algorithm is also put forth in

[2], where an approximation of the ℓp,0 pseudonorm is used
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for the regularizing term. Unfortunately, these deterministic

methods suffer from two main setbacks; their estimation per-

formance is parameter dependent, and they require a priori

knowledge of the signal’s support structure. In the Bayesian

framework, an adaptive variational Bayes estimator has been

recently proposed in [3], which is fully automatic, but also

requires some grouping information.

In this paper we develop an adaptive variational Bayes

estimator that has the ability to identify the grouping infor-

mation of the signal. To this end, we adopt and extend the hi-

erarchical Bayesian model presented in [4]. Specifically, we

model sparsity on the signal coefficients using a multivariate

Laplace distribution. The grouping information is then re-

flected on the parameters of the Laplace distribution, which

are imposed to be interrelated in a Markov chain. To achieve

this, we extend the formulation of the Gamma Markov ran-

dom field, that has been proposed in [5] for modeling the

positive variances of Gaussian audio signals, to define a gen-

eralized inverse Gaussian (GIG) random field. This formu-

lation is important in order to retain the conjugacy of our

model’s prior distributions. A variational Bayes algorithm is

then developed to perform approximate online inference on

the model parameters. The advantages of the proposed esti-

mator are that (a) it adjusts to any grouping pattern automati-

cally, (b) it is fully automatic, (c) it has quadratic complexity,

and (d) as a Bayesian technique, it provides entire approxi-

mate posterior distributions for the model parameters instead

of point estimates. Experimental results are provided that val-

idate the superior performance of the proposed method, when

compared to state of the art methods.

Notation: Matrices are denoted by bold capital letters, e.g.

X, vectors are written with bold letters, e.g. x. X¬i and x¬i

denote matrixX and vectorx after excluding its ith column or

ith element, respectively. IM is the M ×M identity matrix.

N (x;µ,Σ) denotes the Gaussian distribution with mean µ

and covariance matrix Σ. GIG(x; ζ, τ, υ) is the generalized

inverse Gaussian distribution defined as

GIG(x; ζ, τ, υ) = exp
[

(ζ − 1)logx− τx − υ
x

]

τ
ζ
2

2υ
ζ
2Kζ(2

√
τυ)

,

where x ≥ 0, τ ≥ 0, υ ≥ 0, and Kζ(·) denotes the mod-

ified Bessel function of second kind with ζ degrees of free-
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dom. The pdf of the Gamma distribution is G(x; ζ, τ) =
exp

[

(ζ − 1)logx− x
τ − logΓ(ζ) − ζlogτ

]

, where Γ(·) is the

gamma function, while the inverse Gamma pdf has the form

IG(x; ζ, τ) = exp
[

−(ζ + 1)logx− τ

x
− logΓ(ζ) + ζlogτ

]

.

2. PROBLEM FORMULATION

Consider a group sparse time-varying weight vector w(n) =
[w1(n), w2(n), . . . , wN (n)]T ∈ R

N , which has ξ ≪ N
non-zero elements, and n is the time index. The sparsity

structure of w(n) means that its nonzero elements occur

in blocks rather than being independently distributed in

random positions. In addition, we assume that there is no

knowledge of the sparsity structure, neither in terms of the

number and sizes of the blocks, nor in terms of their posi-

tions in the parameter vector. Our objective is to estimate

the varying vector w(n) with the help of some noisy data,

y(n) = [y(1), y(2), . . . , y(n)]T , observed up to time n. The

data are assumed to be generated by the linear regression

model

y(n) = X(n)w(n) + ǫ(n), (1)

where X(n) = [x(1),x(2), . . . ,x(n)]T is a known n × N
input data matrix, and ǫ(n) stands for additive noise which is

assumed to be zero-mean Gaussian distributed, i.e., ǫ(n) ∼
N (ǫ(n)|0, β−1IM ), where β denotes the noise precision.

The cost function to be minimized for estimating w(n) is

JLS(n) =

n
∑

j=1

λn−j |y(j)− xT (j)w(n)|2

= ‖Λ1/2(n)y(n)−Λ1/2(n)X(n)w(n)‖2, (2)

where λ is the well known forgetting factor, 0 ≪ λ < 1,

and Λ = diag([λn−1, λn−2, . . . , 1]T ). One way to solve this

problem is via the celebrated RLS algorithm, which, however,

cannot take advantage of the presence of the group sparsity

property.

In this paper we examine the problem in (2) from a

Bayesian viewpoint and propose a novel hierarchical Bayesian

model that imposes group sparsity. To automatically capture

the inherent correlation among adjacent coefficients of w(n),
which will help us reveal the underlying sparsity structure, we

consolidate a GIG Markov random chain in our hierarchical

Bayesian model. A time adaptive variational Bayes algorithm

is then developed to perform approximate inference in an

online setting.

3. BAYESIAN MODELING

This section describes a structured sparsity imposing hierar-

chical Bayesian model. For notational expediency, we tem-

porarily drop the dependency of the model parameters on the

Fig. 1. The proposed GIG Markov chain.

time index n. Time indexing will be re-introduced in Section

5, where online Bayesian inference is described.

The Gaussian noise assumption combined with the weighted

least squares function in (2) give rise to the data likelihood

p(y|w, β) = N (y|Xw, β−1Λ−1). (3)

Working within a Bayesian framework, we augment the like-

lihood function in (3) with suitable priors over the model pa-

rameters {w, β}. Motivated by [4], we formulate a hierar-

chical Bayesian model, where, in the first level, w and β are

distributed as

p(w|α, β) =

N
∏

i=1

N
(

wi|0, β−1α−1
i

)

(4)

where αi’s are precision parameters, and

p(β) = G(β; ρ, 1/δ) (5)

where ρ and δ are fixed positive hyperparameters, set close to

zero (ρ = δ = 10−6). In the second level of hierarchy, the

precision parameters αi’s are given an inverse gamma distri-

bution,

p(α) =

N
∏

i=1

IG (αi|1, bi/2) (6)

where bi’s are scale parameters.

We now delve into the distribution of bi’s, which will be

added as a third hierarchical level to our Bayesian model.

As shown in [6], the scale parameters bi’s can be interpreted

as penalty parameters in the adaptive lasso formulation, and,

hence, their estimation is of prime interest. A common ap-

proach is to assign a suitable non-informative prior over bi’s
so as to infer them directly from the data, e.g., [7, 4]. An

interesting idea, recently coined in [8], is that the grouping

information can be properly embedded in the prior distribu-

tion of the penalties bi’s, in order to shrink the original sig-

nal w towards zero in a structured manner. However, in [8],

an additional group-membership matrix is required that pro-

vides information on the grouping structure of the signal co-

efficients. In this work, we assume no prior knowledge on

the sparsity structure and in order to detect it, we propose to

impose correlation among adjacent vector coefficients by or-

ganizing the corresponding penalty parameters bi’s in a gen-

eralized inverse Gaussian Markov chain.

The proposed Markov chain is visualized in the undi-

rected graph of Fig. 1. Each node in the graph corresponds
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to a penalty parameter bi, while the edges between adjacent

variables encode the dependency between the penalties.

To build the Markov chain based on the generalized in-

verse Gaussian distribution, we consider the following depen-

dencies, i = 1, 2, . . . , N ,

p(bi|bi−1) = G(bi|κ, νbi−1) (7)

where κ and ν are hyperparameters. Using the conditional

distribution in (7) and Bayes law, the complete conditional

for each penalty bi is computed as

p(bi|bi−1, bi+1) = GIG
(

bi; 0,
2

νbi−1
,
2bi+1

ν

)

. (8)

Moreover, the joint pdf of the Markov chain can be expressed

as a product of the potential functions

p(b|ν) = 1

C

N
∏

n=1

φb(bn, ν)

N
∏

n=1

φe(bn−1, νbn), (9)

where C is the normalizing constant, φb(ζ, τ) = exp[(τ −
1)logζ] and φe(ζ, τ) = exp[−τζ − τ

ζ ]. The joint pdf in (9)

is a GIG distribution and it is conjugate with respect to the

priors of the second level of our Bayesian model. This leads

to simple forms for the complete conditional posterior distri-

butions of the model parameters and facilitates the use of a

variational Bayes algorithm to perform inference.

4. BAYESIAN INFERENCE

Unfortunately, the true posterior p(β,w,α,b|y) of the pro-

posed model parameters is too complex to be computed using

Bayes rule. In the following we resort to a variational Bayes

approach that entails (a) the approximation of the true poste-

rior with an approximating pdf q(·), and (b) the minimization

of the Kullback-Leibler divergence between the true posterior

and q(·), for the estimation of the latter. We assume that q(·)
is factorized as

q(β,w,α,b) = q(β)
N
∏

i=1

q(wi)
N
∏

i=1

q(αi)
N
∏

i=1

q(bi). (10)

The posterior independence in (10) renders the minimization

problem tractable, in the sense that each approximating factor

can be expressed in closed form, [4]. For the noise precision,

we get a posterior approximating Gamma distribution,

q(β) = G
(

β; ρ̃, δ̃
)

, (11)

where ρ̃ = ρ+M+N
2 , δ̃ =

(

δ +
〈wTAw〉

2 +
〈‖y−Xw‖2〉

2

)−1

,

A = diag(α), and 〈·〉 denotes expectation with respect to the

corresponding q(·). For the weight vector w we get

q(wi) = N (wi;µi, σ
2
i ), i = 1, 2, . . . , N, (12)

with σ2
i = 〈β〉−1(xT

i xi + 〈αi〉)−1, and µi = 〈β〉σ2
i x

T
i (y −

X¬iµ¬i). The approximating posterior of the precision pa-

rameters αi’s, i = 1, 2, . . . , N , is computed as

q(αi) = GIG
(

αi;−1/2, 〈β〉〈w2
i 〉, 〈bi〉

)

. (13)

Finally, the penalty parameters bi’s, i = 1, 2, . . . , N − 1, are

inferred via the GIG approximating distribution (due to space

limitations analytic derivations are omitted)

q(bi) = GIG (bi; 1, ̺i, ωi) , (14)

where ̺i =
〈

1
αi

〉

+ 2
ν

〈

1
bi−1

〉

and ωi = 2〈bi+1〉/ν. For the

N th node of the chain the posterior in (14) simplifies to

q(bN ) = G (bN ;κ+ 1, 2/̺N) . (15)

At this point, it is interesting to notice the interdependency

among the parameters of the approximating factors expressed

in (11), (12), (13), (14), and (15). This mutual dependency

gives rise to the alternating optimization scheme of the vari-

ational Bayes algorithm, where a single posterior parameter

is updated while the remaining are kept fixed in their most

recent values. The required moments of the posterior param-

eters are computed as

〈β〉 = 2ρ+M +N

2δ + 〈wTAw〉 + 〈‖y −Xw‖2〉 (16)

〈wi〉 = (xT
i xi + 〈αi〉)−1xT

i (y −X¬i〈w¬i〉), (17)

〈αi〉 =
√

〈bi〉
〈β〉〈w2

i 〉
,

〈

1

αi

〉

≡ ᾰi =
1

〈αi〉
+

1

〈bi〉
, (18)

〈bi〉 =
√

ωi

̺i

K2(
√
ωi̺i)

K1(
√
ωi̺i)

, 〈bN 〉 = (κ+ 1)
2

̺N
, (19)

〈

1

bi

〉

≡ b̆i =

√

̺i
ωi

K0(
√
ωi̺i)

K1(
√
ωi̺i)

, (20)

〈

wTAw
〉

=

N
∑

i=1

〈αi〉
〈

w2
i

〉

,
〈

w2
i

〉

= 〈wi〉2 + σ2
i , (21)

and

〈

‖y −Xw‖2
〉

= ‖y −
N
∑

i=1

xi〈wi〉‖2 +
N
∑

i=1

σ2
i x

T
i xi. (22)

The resulting batch variational Bayes scheme updates, in

its core, the expectations 〈wi〉, 〈β〉, 〈αi〉, and 〈bi〉, for

i = 1, 2, . . . , N , and converges in a few iterations. The

final estimate for the weight vector is given by the expec-

tation 〈w〉, and it is group sparse. In the next Section, we

show how the proposed variational Bayes algorithm can be

extended over to the time-adaptive domain.
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5. ADAPTIVE VARIATIONAL BAYES

We now reestablish time indexing for all model parameters

in order to develop the time-adaptive version of the batch

variational algorithm presented in the previous Section. To

achieve this, we propose the recursive computation of ap-

propriate fixed-size quantities and map batch iterations to

time iterations. As in [4], we define the quantities, R(n) =
XT (n)Λ(n)X(n) + A(n − 1), z(n) = XT (n)Λ(n)y(n),
d(n) = yT (n)Λ(n)y(n), which are easily time-updated as

R(n) = λR(n− 1) + x(n)xT (n)− λA(n− 2) +A(n− 1),
(23)

z(n) = λz(n − 1) + x(n)y(n), (24)

d(n) = λd(n− 1) + y2(n). (25)

Utilizing (23) and (24), the weight estimate ŵi(n) ≡ µi(n)
can be calculated recursively as, [4],

ŵi(n) =
1

rii(n)

(

zi(n)− rT¬i(n)ŵ¬i(n)
)

, (26)

where rT¬i(n) = xT
i (n)Λ(n)X¬i(n) is the i-th row of R(n)

after removing its i-th element rii(n), and ŵ¬i(n) is a (N −
1)-dimensional vector containing all but the ith latest estimate

ŵi(n). Utilizing (25), the noise precision estimate can be ef-

ficiently approximated by, [4],

β(n) =
(1− λ)−1 +N + 2ρ

2δ + d(n)− zT (n)ŵ(n− 1) + rT (n)σ(n− 1)
,

(27)

where r(n) = diag(R(n)) and σ(n − 1) is the vector of

posterior weight variances at time n − 1 with σ2
i (n − 1) =

1/(β(n− 1)rii(n− 1)). According to (18), αi’s and ᾰi’s are

time updated as

αi(n) =

√

b(n− 1)

β(n)ŵ2
i (n) + r−1

ii (n)
, (28)

and

ᾰi(n) =
1

αi(n)
+

1

bi(n− 1)
. (29)

Next, let ̺i(n) = ᾰi(n) + 2b̆i(n − 1)/ν and ωi(n) =
2bi+1(n − 1)/ν. Then, the time updates of the penalty pa-

rameters bi’s, i = 1, 2, . . . , N − 1, are expressed as

bi(n) =

√

ωi(n)

̺i(n)

K2(
√

ωi(n)̺i(n))

K1(
√

ωi(n)̺i(n))
, (30)

while for the last chain node we have that bN(n) = (κ +

1)2/̺N(n). Finally, with respect to (20), b̆i’s are updated as

b̆i(n) =

√

̺i(n)

ωi(n)

K0(
√

ωi(n)̺i(n))

K1(
√

ωi(n)̺i(n))
, i = 1, . . . , N − 1.

(31)

Initialize λ, ŵ(0),A(−1),A(0),R(0), z(0), d(0),σ(0)
Set ρ = δ = 10−6, κ = 10−3, ν = 103

for n = 1, 2, . . .
R(n) = λR(n− 1) + x(n)xT (n)

−λA(n− 2) +A(n− 1)
z(n) = λz(n − 1) + x(n)y(n)
d(n) = λd(n− 1) + y2(n)

β(n) = N+(1−λ)−1+2ρ
2δ+d(n)−zT (n)ŵ(n−1)+rT (n)σ(n−1)

for i = 1, 2, . . . , N
σ2
i (n) = 1/(β(n)rii(n))

ŵi(n) = r−1
ii (n)

(

zi(n)− rT¬i(n)ŵ¬i(n)
)

αi(n) =
√

bi(n− 1)/(β(n)ŵ2
i (n) + r−1

ii (n))

ᾰi(n) = 1/αi(n) + 1/bi(n− 1)
end for

for i = 1, 2, . . . , N − 1
ωi(n) = 2bi+1(n− 1)/ν

̺i(n) = ᾰi(n) + 2b̆i(n− 1)/ν

bi(n) =
√

ωi(n)
̺i(n)

K2(
√

ωi(n)̺i(n))

K1(
√

ωi(n)̺i(n))

b̆i(n) =
√

̺i(n)
ωi(n)

K0(
√

ωi(n)̺i(n))

K1(
√

ωi(n)̺i(n))

end for

bN(n) = (κ+ 1)/(ᾰN (n)/2 + b̆N−1(n)/ν)
end for

Table 1. The proposed AGSVB-MC algorithm.

The proposed adaptive group sparse variational Bayes Markov

chain (AGSVB-MC) algorithm is summarized in Table 1. The

proposed algorithm converges in a few iterations and pro-

duces group sparse solutions, as shown in the experimental

results section. Its computational complexity is O(N2).

6. EXPERIMENTAL RESULTS

In this section we assess the performance of the proposed

algorithm by considering a time-varying channel estimation

problem. We simulate a Rayleigh fading channel of length

128, where the nonzero coefficients are generated using Jakes

model, [9], and follow a Rayleigh distribution with normal-

ized Doppler frequency fdTs = 5× 10−5. Moreover, we as-

sume that the channel’s sparsity structure pattern is random,

which is a very challenging setting. Specifically, the nonzero

coefficients are randomly organized in groups of length 8 to

10, while the total number of groups in each channel real-

ization is also randomly selected from 2 to 4. The forgetting

factor is set to λ = 0.99. The channel input is a random se-

quence of binary ±1 symbols, organized in packets of length

2000. Noise is assumed to be white Gaussian, and its variance

is adjusted so as to get an SNR level of 15dB.

The proposed algorithm is compared with (a) the re-

cently proposed AGSVB-S algorithm, [3], which requires
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ŵi(n)

20 40 60 80 100 120
0

2

4

6

8

Position index

V
a
lu

e

 

 

1/bi

Fig. 3. Estimated channel and inverse penalty coefficients.

prior knowledge of the group signal structure, (b) the ASVB-

mpL algorithm, [4], which is sparsity structure-ignorant,

and (c) a genie-aided RLS that operates only on the cor-

rect support set, and it is thus used as a benchmark. To

assess the estimation performance of the comparing algo-

rithms, we use the normalized mean square error, defined

as NMSE = E

[

‖w(n)− ˆw(n)‖2
]

/E
[

‖w(n)‖2
]

, where

ŵ(n) is the estimate of the channel vector w(n).

Fig. 2 shows the NMSE curves of the considered al-

gorithms, which are ensemble averages of 100 transmission

packets, channels, and noise realizations. It is easily observed

that all algorithms converge to their respective error floor after

almost 300 time iterations. At time instant n = 800, a sudden

change is simulated on the channel, caused by the addition of

an extra group of nonzero coefficients. This causes a burst on

the NMSE curves, which need about 300 iterations to reach

an error floor again. The worst performance is obtained by the

AGSVB-S algorithm. This is to be expected since AGSVB-S

algorithm is designed to operate on a fixed group size (set at

D = 8), which is not the case in this experiment. Moreover,

the proposed AGSVB-MC algorithm has the overall best per-

formance and it is shown to outperform its structure-ignorant

counterpart ASVB-mpL.

Let us now have a closer look at AGSVB-MC’s channel

estimate, produced at the last iteration of Fig. 2. Fig. 3 dis-

plays both the estimated channel coefficients (at the top) and

the corresponding inverse penalty parameters bi’s (at the bot-

tom). Notice that the estimated weight vector is indeed group

sparse, and that its nonzero entries are positioned at the exact

indexes where the penalty parameters have the lowest value.

Hence, it can be concluded that the structural information is

definitely captured by the penalty parameters, which, in our

algorithm, have the role of detecting the support set.
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