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ABSTRACT

Carrier frequency and its corresponding direction of arrival
(DOA) estimation, at sub-Nyquist sampling rates of narrow-
band (bandwidth not exceeding B Hz) sources is considered in
this paper. We assume M physical sensors arranged in a two
dimensional nested sensor array configuration and propose to
modify the receiver architecture by inserting an additional de-
lay channel to only the dense sensor array. An efficient sub-
space based estimation algorithm to estimate the carrier fre-
quencies and their DOAs is also presented. With this proposed
approach we show that a minimum ADC sampling frequency
of B Hz is sufficient and O(�M/4�2) carrier frequencies and
their DOAs can be estimated despite all the carrier frequen-
cies exactly aliased to the same frequency. Furthermore, sim-
ulations indicate that when used for spectrum estimation, in
addition to carrier frequencies and their DOA estimation, it
shows better performance compared to an existing approach
using the same M element uniform two dimensional sensor
array.

Index Terms— Direction-of-arrival, sub-Nyquist sam-
pling, Spectrum estimation, nested sensor array.

1. INTRODUCTION

In applications such as cognitive radios (CR), it is essential
to have the knowledge of the occupied frequency band as well
as their corresponding direction of arrival (DOA). These infor-
mation will enable the CRs not only to utilize the unused spec-
trum but also would help in reducing the interference with the
primary users [1]. The task of identifying the occupied spec-
trum bands can easily be accomplished by estimating their
carrier frequencies. It is essential as well as important to es-
timate these parameters i.e., the carrier frequency and its cor-
responding DOA, at sub-Nyquist sampling rates. Estimating
these quantities at sub-Nyquist sampling rate not only elim-
inates the necessity of high rate analog to digital converter
(ADC), but also overcomes the subsequent high rate signal
processing operations.

This problem of estimating the carrier frequencies and
their DOAs at sub-Nyquist sampling rates have previously
been addressed in [2] - [4]. [2] proposes to decompose the
entire wide spectrum band into smaller bands, typically into
1GHz bands. Each decomposed smaller band is then split into
direct path and delayed path, and subsequently samples the
signal corresponding to each path at a sub-Nyquist sampling
rate. Implementing this in practice is expensive, since this

process of decomposing into smaller bands and then splitting
into paths requires lot of hardware. On other hand, [3] pro-
poses to employ a sub-Nyquist sampler such as multi-coset
sampler [5] at the output of each sensor. In practice, a multi-
coset sampler is realized through a multi-channel structure
[6], and hence similar to the previous case even this approach
requires more hardware. Recently, in [4] the authors of this
paper, proposed a new approach, in which the receiver archi-
tecture is modified by introducing a single additional delayed
branch at the output of every sensor. With this approach, it is
shown that to estimate the complete signal spectrum blindly
comprising of N narrow band unknown signals and their
DOAs, M ≥ N + 1 sensors are sufficient. Further it is also
shown that an ADC sampling rate of atleast B Hz, where
B denotes the maximum bandwidth of narrow-band signal,
would suffice, thereby leading to a minimum overall sampling
rate of 2MB = 2(N + 1)B Hz.

More recently, efficient DOA approaches which are based
on certain sensor arrangements such as sparse ruler [7], nested
ruler [8, 9] etc, have been proposed. These methods by using
the second order statistics and intelligently exploiting the sen-
sor arrangements show that more DOAs than the actual num-
ber of physical sensors can be identified. In particular, the
nested array arrangement proposed in [8, 9] is attractive, since
it is easy to construct for any M . In this paper, motivated by
these recent developments, we propose to use the two dimen-
sional nested array arrangement proposed in [9] by combin-
ing with the idea of modified receiver architecture described
in [4], to increase the carrier frequency and their DOA estima-
tion capacity. However, instead of trivially extending the idea
of using the modified architecture by adding a delayed branch
to the output of every sensor, here we propose to add the addi-
tional delayed branch only to those sensors placed at a denser
scale in the nested array arrangement. With this modification,
the algorithm proposed in [4] for the estimation of carrier fre-
quencies and their DOAs cannot be directly employed. Hence,
later in Section 3 we describe an alternative algorithm based
on the idea of spatial smoothing, using which we can estimate
upto �M/4� ≥ √

N + 1 (assuming equal number of sensors
are allocated to sparse and dense array) carrier frequencies
and their DOAs. Also, since the additional channel is only
used for a subset of the physical sensors, unlike [4] the num-
ber of ADCs, thereby the minumum sampling rate of the sys-
tem reduces; typically for a M sensor receiver, while with [4]
it requires 2M ADCs and an overall minimum sampling rate
of 2MB Hz, but with the proposed approach it requires only
(3M + 1)/2 ADCs and an overall minimum sampling rate of
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(3M + 1)B/2 Hz. Further, due to the increased degrees of
freedom as a result of the nested arrangement, the spectrum
estimation accuracy shows improvement when the proposed
approach is used for spectrum estimation (assuming N < M )
in addition to DOA and carrier frequency estimation. Later in
Section 4, we shall demonstrate through simulations that the
proposed approach shows better spectrum estimation perfor-
mance compared to using the approach of [4] with the same
M element two dimensional uniform sensor array.

2. PRELIMINARIES

In this section we first describe briefly the signal model and its
frequency domain formulation provided in [4]. Then for the
sake of completeness, a brief overview of the two dimensional
nested arrays described in [9] is provided.

2.1. Signal model and frequency domain representation

N uncorrelated, disjoint, far field narrow-band signals with
bandwidth not exceeding B Hz, which are spread within a
very wide spectrum of F = [0, 1/T ] is observed by a receiver
consisting of M sensors. Such a signal which is commonly
referred to as multi band signal (MBS) shall be denoted by
x(t) in time domain and can be expressed as

x(t) =
N∑
i=1

si(t)e
j2πfit. (1)

Since the MBS x(t) is bandlimited to the region F , the
Nyquist sampling rate of x(t), fnyq = 1/T . The signal ob-
served by the lth sensor, l = {1, 2, ...,M} can be expressed
as

xl(t) =
N∑
i=1

si(t)e
j2πfi(t+τl(θi)) + ηl(t) (2)

where si(t), i = {1, 2, ..., N} denotes the ith source at base-
band of bandwidth not exceeding B Hz with B � 1/T ,
{fi}Ni=1 denotes the N distinct unknown carrier frequencies
and {θi}Ni=1 their corresponding DOA. The phase τl(θi) =
[τxl τyl ][cos(θi) sin(θi)]

T , (τxl , τ
y
l ) denotes the lth ele-

ment of the sensor array given by the lth position of the set
S (refer (6)) and [.]T denotes the transpose of the vector.
The noise ηl(t) is assumed to be white with variance σ2

n and
uncorrelated with the sources.

The discrete time Fourier transform (DTFT) of the above
signal obtained by sampling at a sub-Nyquist sampling rate of
fs = 1/LT (i.e., the ADCs samples at every t = nLT ),L
denotes the sub-sampling factor, can be expressed in the fol-
lowing linear form as [4]

X(f) = [a(f1, θ1), . . . , a(fN , θN )]︸ ︷︷ ︸
A(f ,θ)

S(f) + η(f) (3)

where X(f) = [X1(e
j2πfT ), . . . , XM (ej2πfT )]T , Xl(e

j2πfT )
denotes the DTFT of xl(nLT ), S(f) = [Sp

1 (f), . . . , S
p
N (f)]T ,

Sp
i (f) denotes the periodic aliased spectrum of ith source sig-

nal, and for any k ∈ {1, 2, ...N}, the array manifold vector
a(fk, θk) = [ej2πfkτ1(θk),

. . . , ej2πfkτM (θk)]T . f = {fi}Ni=1 and θ = {θi}Ni=1 de-
notes the unknown carrier frequency set and the DOA set
respectively.

2.2. Nested arrays in two dimension

A brief introduction to two dimensional nested arrays is pro-
vided in this section. Interested readers may refer to [9] for
more details on the construction of nested arrays in two di-
mension. Also, for the sake of simplicity in this paper we
assume nested rectangular sensor array configuration, nev-
ertheless the idea presented here can be extended to other
classes which are outlined in [9]. A rectangular nested array
is basically a concatenation of two uniform rectangular arrays
(URAs): dense URAs with say Mx

d and My
d elements and a

sparse URAs with say Mx
s and My

s elements along the two or-
thogonal axes respectively such that Mx

s M
y
s +Mx

dM
y
d − 1 =

M . The sensor locations corresponding to the dense URA and
sparse URA is given by

Sdense = {(d/c)I[px py]
T , 0 ≤ px < Mx

d , 0 ≤ py < My
d }
(4)

Ssparse = {(d/c)P[px py]
T , 0 ≤ px < Mx

s , 0 ≤ py < My
s }

(5)
where I denotes the identity matrix, px, py ∈ Z, d ≤ cT/2 de-
notes the half wavelength spacing corresponding to the max-
imum frequency, which in this is 1/T , and the matrix P =(

Mx
d 0
0 My

d

)
. The sensor locations of the entire nested ar-

ray is given by [9]

S = {Sdense ∪ Ssparse}. (6)

It may be observed that the array manifold matrix A(f ,θ)
resembles the two-dimensional (azimuth - elevation) DOA ar-
ray manifold matrix [11]. However, the methods that are most
often used in two-dimensional DOA estimation such as MU-
SIC algorithm which essentially searches along both the di-
rections is not feasible in the present case. This is because not
only the bandwidth of x(t) is large (results in enormous search
points), but it also results in ambiguity (refer to [10, Section
IV]). Hence in [4], an additional delayed channel was added to
every sensor using which the carrier frequencies could be eas-
ily determined. In the following section we propose a similar
modification to the architecture by adding an additional chan-
nel, but unlike [4], we propose to add this additional chan-
nel only to the dense URA. This helps in further reducing the
number of channels and thereby reduces the overall sampling
rate.

3. PROPOSED APPROACH

We begin the description of the proposed approach by first
describing the modifications to the receiver architecture and
the corresponding formulations. We then describe an efficient
reconstruction algorithm for estimation of carrier frequencies
and their corresponding DOAs.

3.1. Modified receiver architecture and formulation

Fig. 1 shows the modified receiver architecture. It can be
noticed that an additional delayed channel which delays the
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signal by τT , 0 < τ ≤ 1 is added only to the dense URA.
Also, as shown in the figure, all the ADCs are synchronized
and samples at a sub-Nyquist sampling rate of fs = 1/LT
i.e., at every t = nLT . Compared to the existing approaches
outlined in Section 1, the hardware requirement is minimized;
typically it requires 2Md +Ms ADCs, where Md = Mx

dM
y
d

and Ms = Mx
s M

y
s − 1, denotes the number of dense and

sparse URA sensors respectively.

Fig. 1. Proposed multi-channel receiver architecture. The de-
layed branch which delays the signal by τT, 0 < τ ≤ 1 is
added to only the dense URA.

Let {xd
i (n)}Md

i=1, {xs
i (n)}Ms

i=1 and {xτ
i (n)}Md

i=1 denote the
time domain samples corresponding to the direct path dense
URA, direct path sparse URA and the additional delayed path
dense URA respectively. Correspondingly, their DTFTs be
denoted by {Xd

i (f)}Md
i=1, {Xs

i (f)}Ms
i=1 and {Xτ

i (f)}Md
i=1. Us-

ing (3), the combined DTFT vector Xtotal(f) = [Xd(f),Xs(f),
Xτ (f)]

T , which is composed of both the direct path as well
as the delayed path DTFT vectors can be expressed as

Xtotal(f) =

⎛
⎝ Ad(f ,θ)

As(f ,θ)
Aτ (f ,θ)

⎞
⎠

︸ ︷︷ ︸
Atotal(f ,θ)

S(f) + N(f)

where Ad(f ,θ), As(f ,θ) and Aτ (f ,θ) denotes the array
manifold matrix corresponding to the direct path dense URA,
direct path sparse URA and the delayed path dense URA re-
spectively. The array manifold matrix for the delayed path
Aτ (f ,θ) can be expressed as [4], Aτ (f ,θ) = Ad(f ,θ)D,
where D is a diagonal matrix of order N with the diagonal el-
ements {e−j2πf1τT , e−j2πf2τT , ..., e−j2πfNτT }. Now, using
(7), we estimate the following covariance matrix

Rtotal
XX =

∫
f∈[0,fs]

Xtotal(f)XH
total(f)df

= Atotal(f ,θ)RssAH
total(f ,θ) + σ2

nI (7)

where Rss =
∫
f∈[0,fs]

S(f)SH(f) denotes the source covari-
ance matrix. Due to the assumption of uncorrelated sources,
Rss can be assumed to be a diagonal matrix with diagonal el-
ements P = [σ2

s1 , σ
2
s2 ...σ

2
sN ]T , {σ2

sk
}Nk=1 denotes the signal

power of the kth source. Now, the vectorized Rtotal
XX can be

expressed as

z = vec(Rtotal
XX ) = A∗

total(f ,θ)⊗Atotal(f ,θ)vec(Rss)+σ2
nI

=

⎛
⎝ Ad(f ,θ)

As(f ,θ)
Aτ (f ,θ)

⎞
⎠

∗

�
⎛
⎝ Ad(f ,θ)

As(f ,θ)
Aτ (f ,θ)

⎞
⎠P + σ2

nI (8)

where ′⊗′ and ′�′ denotes the Kronecker product and Khatri-
Rao product respectively, and ′∗′ denotes the conjugate op-
erator. The above simplification from Kronecker product to
Khatri-Rao product is due to the diagonal matrix structure of
Rss. Let zv and zτv denote a subset of the elements of z which
are chosen as

zv = Av(f ,θ)P + σ2
nI (9)

zτv = Aτ
v(f ,θ)P + σ2

nI (10)

where Av(f ,θ) = Ad(f ,θ)
∗ � As(f ,θ) and Aτ

v(f ,θ) =
Aτ (f ,θ)

∗�As(f ,θ). If the nested array locations are chosen
as described in Section 2.2, then it may easily be observed that
the array manifold matrix Av(f ,θ) corresponds to the direct
path URA with locations given by

Sv = {(d/c)I[px py]
T ,−Mx

d ≤ px < Mx
d (M

x
s − 1),

−My
d ≤ py < My

d (M
y
s − 1)}. (11)

Similarly it can be observed that Aτ
v(f ,θ) provides the de-

layed path array manifold matrix corresponding to the lo-
cations of Sv , and thus can be expressed as Aτ

v(f ,θ) =
Av(f ,θ)D. This new URA whose locations are given by Sv

is usually referred to as the difference URA [9].
P however is a single column vector and hence the esti-

mation algorithm proposed in [4] cannot be directly applied
here to estimate the carrier frequencies and their correspond-
ing DOAs. Hence in the following section we outline a rank
enhancing algorithm making use of zv and zτv using which we
can estimate both these quantities efficiently.

3.2. Estimation algorithm

The rank enhancing algorithm described in this section is
based on the idea of two-dimensional spatial smoothing intro-
duced in [10].

3.2.1. Formation of data matrices

Let Mx
v and My

v denote the lengths of the URA Sv , along the
two orthogonal axes, which are essentially given by (see (11))
Mx

v = Mx
s M

x
d and My

v = My
sM

y
d . Also, let zv(x, y) and

zτv (x, y) denote the data in the vector zv and zτv respectively,
corresponding to the sensor location (x, y). Let us define ma-
trices [Bm,n]a,b = zv(a+m+�Mx

v /2�, b+n+�My
v /2�) and

[Bτ
m,n]a,b = zτv (a+m+ �Mx

v /2�, b+ n+ �My
v /2�), where

{0 ≤ a < m}, {0 ≤ b < n}. The matrices Bm,n and Bτ
m,n

contains the data of the URA Sv corresponding to the loca-
tions {(x, y),m < x ≤ m+�Mx

v /2�, n < y ≤ n+�My
v /2�}.

Now, we form the following data matrices

D = [vec(Bp1,p2
), ..., vec(Bp1,p2+�Mx

v /2�), vec(Bp1+1,p2
),

..., vec(Bp1+1,p2+�Mx
v /2�), ..., vec(Bp1+�My

v /2�,p2+�Mx
v /2�)] (12)

Dτ = [vec(Bτ
p1,p2

), ..., vec(Bτ
p1,p2+�Mx

v /2�), vec(Bτ
p1+1,p2

),

..., vec(Bτ
p1+1,p2+�Mx

v /2�), ..., vec(Bτ
p1+�My

v /2�,p2+�Mx
v /2�)] (13)
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where p1 = −My
d , p2 = −Mx

d . The above data matrices
which are of size �Mx

v /2��My
v /2�×�Mx

v /2��My
v /2� can be

decomposed as

D = [aleft(f1, θ1)...aleft(fN , θN )]RssAH
new(f ,θ) + σ2

nI
(14)

Dτ = [aleft(f1, θ1)...aleft(fN , θN )]RssDHAH
new(f ,θ)+σ2

nI
(15)

where aleft(fk, θk) denotes the array manifold vector for
the carrier frequency fk and DOA θk, corresponding to the
locations of vec(B−My

d ,−Mx
d
) and the array manifold matrix

Anew(f ,θ) = [anew(f1, θ1)...anew(fN , θN )]H , the array
manifold vector anew(fk, θk) is given by

anew(fk, θk) = [1, ej2πω
k
x , ..., ej2π�M

x
v /2�ωk

x , ej2π(ω
k
x+ωk

y ),

...ej2π(�M
x
v /2�ωk

x+ωk
y )...ej2π(�M

x
v /2�ωk

x+�My
v /2�ωk

y )]H (16)

where ωk
x = (d/c)fk cos(θk) and ωk

y = (d/c)fk sin(θk).

3.2.2. Estimation of carrier frequencies and DOA

Using the above data matrices D and Dτ , we form the follow-
ing covariance matrices

RDD = DHD (17)
RDτD = (Dτ )HD. (18)

Assuming N < �Mx
v /2��My

v /2�, similar to [4] under no-
noise condition it can easily be shown that the N general-
ized eigenvalues (GEs), say {λi}Ni=1, of the matrix pencil
{RDτD,RDD}, would yield the diagonal values of D∗. By
using these GE’s the carrier frequencies can then be estimated
using

f̂i =
arg λi

2πτT
, i = {1, 2, ..., N}. (19)

While under no-noise condition, the above equation would
yield exact carrier frequencies, however under the presence of
noise the GE’s are perturbed, and hence the estimated carrier
frequencies shall be deviated from the true values. Also since
0 < τ ≤ 1, it can easily be noticed from the above equation
that the frequency errors gets amplified by 1/τ , and hence in
practice it is always preferable to choose τ closer to 1.

Upon estimation of the carrier frequencies, the signal sub-
space and noise subspace of RDD can be estimated by using
the eigenvalue decomposition. Now, using anew(fk, θk) as
the signal space spanning vectors, MUSIC algorithm can then
be employed to estimate DOA θk corresponding to the carrier
frequency fk, ∀k = {1, 2, ..., N}. To further improve the ac-
curacy of the estimated carrier frequency and also to estimate
DOA in a computationally efficient manner, the computation-
ally efficient two-dimensional multi-resolution algorithm de-
scribed in [4] can be employed.

If in addition to carrier frequencies and DOAs, signal
spectrum is required then by assuming N ≤ M , the array
manifold matrix A(f ,θ) can be formed with the estimated
frequency and DOA, and by using (3) S(f) can be estimated.
The signal spectrum can then be estimated by following the
method outlined in [4, Section 3.3.2].

3.3. Minimum sampling rate

Proposition 3.1 With the two-dimensional nested array ar-
rangement outlined in Section 2.2 and further assuming
sources are uncorrelated, the N carrier frequencies and their
DOAs are completely recoverable (assuming no-noise) using
the proposed approach if
i) N < �Mx

v /2��My
v /2�

ii) L ≤ 1/BT (i.e., fs ≥ B).

As shown in [9], to obtain maximum gain from nesting, al-
most same number of elements must be allocated to both the
sparse and dense URAs. Assuming that (M + 1)/2 sensors
are allocated to each of the dense as well as the sparse URA,
it can easily be observed from the above proposition that upto
�M/4�2 − 1 carrier frequencies and their DOAs can be es-
timated. Now, by taking the lower limit on the second con-
dition, and with the above sensor arrangement assumption,
the overall minimal sampling rate of the entire proposed re-
ceiver would be fprop

min = (3M + 1)B/2. Since B � 1/T ,
fprop
min � fnyq .

4. SIMULATION RESULTS

In this section, we present the simulation results to illustrate
the capability and performance of the proposed approach. For
all our simulations, we fix F = [0, 5] GHz and B = 10 MHz.
A nested array with dense URA of Mx

d = My
d = 3 sen-

sors and a sparse URA with the same number of elements
are chosen. This corresponds to a total of M = 17 physi-
cal sensors (see Section 2.2). The locations of the dense and
the sparse URAs are generated according to (4) and (5) re-
spectively. This configuration provides a difference URA with
Mx

v = My
v = 9.

First we conducted simulation to test the maximum fre-
quency and DOA estimation capacity with the proposed ap-
proach. With the above nested configuration, as shown by
Proposition 3.1, upto �Mx

v /2��My
v /2� − 1 = 24 carrier

frequencies and their DOAs can be estimated and hence we
choose N = 24 for this simulation. Also, we fix the sampling
frequency of ADC to fs = 10 MHz (corresponding to the
lower limit of the second condition described by Proposition
3.1). Observe that since fs = B = 10 MHz, all the 24 infor-
mation bands will completely alias between [0,10] MHz. Fig.
2 shows the scatter plot of the actual and estimated carrier fre-
quencies and their corresponding DOAs. From the plot it may
be observed that all 24 carrier frequencies and their DOAs
are properly estimated despite all the bands being completely
aliased and N > M .

Next, we performed simulations to compare the spectrum
estimation performance with the proposed approach. The per-
formance is compared against the approach of [4] with a URA
of size 6×3 and also with an oracle method of the same URA
dimension. In the oracle method, the signal is reconstructed
by assuming the carrier frequencies and their DOAs are per-
fectly known. The URA dimension of 6× 3 is chosen since it
requires approximately the same number of physical sensors
required by the nested array configuration chosen here. For
this simulation, we fix N = 10 sources with carrier frequen-
cies f = {300, 550, 800, 1050, 1300, 1800, 2050, 2300,
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2800, 3550} MHz and their corresponding DOAs θ = {100, 130,
50, 150, 30, 200, 235, 250, 310, 350} deg. Further we fix the
ADC sampling frequency to fs = 250 MHz. With this sam-
pling frequency and the choice of the carrier frequencies, it
may be noticed that all the bands exactly alias around 50 MHz
following the sub-Nyquist sampling. Fig. 3 shows the RMSE
performance plots for the nested array (proposed approach),
the approach of [4] with the URA 6×3 and the oracle method.
From the figure it may be noticed that the proposed approach
performs better and approaches closer to the performance of
the oracle method faster when compared to the URA with
6 × 3 elements. The covariance matrix dimension for this
nested configuration with the proposed approach is 25 × 25,
while for the 6× 3 URA elements with the approach of [4] it
is 18 × 18. Because of this increased matrix dimension, the
nested array based approach proposed here seems to perform
better compared to 6× 3 URA.

It is also important to notice the reduction in the hard-
ware and the sampling frequency with the proposed approach;
while the proposed scheme requires only 26 ADCs (overall
sampling frequency = 6.5 GHz), but estimating with the regu-
lar 6 × 3 URA (using the approach of [4]) requires 36 ADCs
(overall sampling frequency = 9 GHz).
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Fig. 2. Scatter plot of carrier frequency and their correspond-
ing DOA for 24 sources
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Fig. 3. RMSE vs SNR performance comparison of the esti-
mated spectrum.

5. CONCLUSION

The problem of estimation of carrier frequencies and their cor-
responding DOAs of N narrow band signals spread within a
large spectrum band, sampled at sub-Nyquist sampling rate
is considered in this paper. We assume a two-dimensional
nested array arrangement of M physical sensors and a mod-
ification to the architecture by adding an additional delayed
branch to only the dense sensor array is proposed. An effi-
cient estimation algorithm based on the second order statistics
is also presented in this paper. With this proposed approach,
we showed that for a two dimensional nested array compris-
ing of M physical sensor elements, upto �M/4�2 − 1 carrier
frequencies and their DOAs can be estimated even when all
the frequencies exactly alias to the same frequency. Further,
through simulations we demonstrated that the proposed ap-
proach when used for spectrum estimation in addition to car-
rier frequency and DOA estimation, shows improved RMSE
performance compared to the same M element, uniform two
dimensional array.
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