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ABSTRACT
The problem of direction-of-arrival (DOA) estimation using
partly calibrated arrays composed of multiple identically ori-
ented subarrays is considered. The subarrays are assumed to
possess the shift-invariance property which is exploited to de-
velop a distributed search-free DOA estimation algorithm that
is based on the generalized eigendecomposition (GED) of a
pair of covariance matrices. We propose a fully decentralized
adaptive algorithm which tracks the generalized eigenvalues
(GEVs) of a non-Hermitian pair of covariance matrices, from
which the DOAs are estimated. Moreover, to enforce the am-
plitude property of the nominal source GEDs, we propose a
suitable measurement weighting scheme. We demonstrate the
estimation performance of our algorithm with simulations and
confirm that our algorithm is able to identify more sources
than each subarray individually can.

Index Terms— partly calibrated arrays, cooperative DOA
tracking, decentralized generalized eigendecomposition

1. INTRODUCTION

DOA estimation using sensor arrays is essential for many ap-
plications such as radar, sonar, underwater surveillance, and
seismic exploration [1, 2]. For these applications sensor ar-
rays with large apertures and large sensor numbers are attrac-
tive as they offer high angular resolution and are able to iden-
tify a large number of sources. Due to high calibration cost,
the large array is split into smaller fully calibrated subarrays
with unknown displacement between the subarrays. Thus,
they are referred to as partly calibrated arrays. Centralized
DOA estimation algorithms using partly calibrated arrays are
introduced in [3–5]. These algorithms possess high resolu-
tion capabilities and are able to identify a large number of
sources. However, centralized algorithms require a power-
ful fusion center (FC) and a large communication bandwidth
at the subarrays to communicate the measurements to the FC.
In [6–9], decentralized subspace-based DOA estimation algo-
rithms were introduced in which each subarray locally com-
putes sufficient statistics and communicates them to a fusion
center (FC). The aforementioned algorithms rely on the as-
sumption that each subarray can individually identify all the
sources. Furthermore, due to transmit power limitations, sub-
arrays at a distance far from the FC are not able to transfer
their local data on a direct link to the FC. In these situations,
multi-hop communication is required, which, however, is as-
sociated with many difficulties, such as the need for discov-
ering and maintaining routing information and dealing with
node failures, to name a few [10].

Based on the ESPRIT algorithm [11], in [12] and [13], we
introduced the D-ESPRIT and L-ESPRIT methods, respec-

tively, for DOA estimation in partly calibrated arrays, where
L-ESPRIT is superior to D-ESPRIT in terms of the associated
communication cost. The D-ESPRIT and L-ESPRIT meth-
ods eliminate the need for a FC by the use of the averaging
consensus (AC) algorithm [14]. The AC algorithm calculates
averages of initial scalar measurements that are distributed
among all the subarrays, using only local communication
between neighboring subarrays, consequently, eliminating
multi-hop communication. The D-ESPRIT and L-ESPRIT
methods perform batch processing, i.e., in both algorithms,
first the individual subarrays collect and store measurements,
then, they perform decentralized DOA estimation which re-
quires computational power and communication between the
subarrays. This results in an unbalanced usage of subar-
ray resources (memory, bandwidth and processing power).
Moreover, the D-ESPRIT and L-ESPRIT methods comprise
a Least Square estimation step which requires a commu-
nication cost that scales quadratically with the number of
sources [12]. In this paper, we propose a decentralized DOA
estimation algorithm which overcomes these shortcomings.

This paper is organised as follows. In Section 2 the DOA
estimation problem is cast as the problem of finding the GEVs
of a pair of covariance matrices, where one matrix is non-
Hermitian, as presented in [15]. In Section 3, based on the
natural power method [16], which tracks the eigenvectors of a
Hermitian matrix, we introduce a decentralized algorithm for
tracking the GEVs of a non-Hermitian pair of matrices. We
also introduce a scheme for weighting the measurements to
enforce constraints on the amplitude of the sought GEVs. In
Section 4, we analyze the communication and memory costs
of our algorithm and in Section 5 we evaluate its performance
using simulations. Finally, we conclude the paper in Sec-
tion 6.

We remark that, similar as in the D-ESPRIT and L-
ESPRIT methods, cooperation between the subarrays enables
the presented algorithm to identify more DOAs than iden-
tifiable by the individual subarrays. Moreover, although
our algorithm is introduced for DOA estimation using non-
Hermitian matrix pair, it can be applied to other GED
problems including Hermitian problems, such as, classifi-
cation [17, p. 186] and blind source separation [18].

In this paper, (·)∗, (·)T , (·)H , �, IIIi and 000i,j denote com-
plex conjugate, transpose, conjugate transpose, element-wise
multiplication, the i × i identity matrix, zero matrix of size
i × j, respectively. Diagonal or block diagonal matrices, the
set of complex numbers, the argument of a complex number,
and the cardinality of a set are denote as diag[·], C, arg[·] and
card[·], respectively.
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2. SIGNAL MODEL
Consider an array composed of K identically oriented uni-
form linear subarrays. The kth subarray is composed of Mk
sensors separated by distance d, measured in half-wavelength.
The array includes in total M ,

∑K
k=1Mk antennas. Dis-

placements between the subarrays are considered to be un-
known. The first Mk − 1 sensor and last Mk − 1 sensors at
the kth subarray are denoted as the upper and lower groups
[12], respectively. Correspondingly, upper and lower selec-
tion matrices are defined as JJJk , [IIIMk−1,000Mk−1×1] and
JJJk , [000Mk−1×1, IIIMk−1], respectively. Note that the upper
and lower sensor groups can be regarded as shifted versions
of each other. This property of the array is very essential for
estimating the DOAs using ESPRIT [11] or the GED algo-
rithm in [15]. We remark that our model can be generalized
to any subarray geometry which maintains this shift invari-
ance property. Consider L independent narrowband far-field
sources whose signals impinge on the planar array from direc-
tions θ1, . . . , θL. The measurement vector of the kth subarray
at time t is xxxk(t) = AAAksss(t) +nnnk(t), (1)
where sss(t)∈CL×1 is the source signal vector, AAAk ∈CMk×L

is the kth subarray steering matrix [12] and nnnk(t) ∈ CMk×1

is the zero mean circular white Gaussian sensor noise with
variance σ2. Let xxxk(t) , JJJkxxxk(t) and xxxk(t) , JJJkxxxk(t).
The overall measurement model can be formulated as

xxx(t) = AAAsss(t) +nnn(t) (2)

where xxx(t) , [xxxT1 (t), . . . ,xxxTK(t)]T andAAA , [AAAT
1 , . . . ,AAA

T
K ]T

and nnn(t) , [nnnT1 (t), . . . ,nnnTK(t)]T . Correspondingly, we de-
fine, xxx(t) , [xxxT1 (t), . . . ,xxxTK(t)]T = JJJxxx(t) and xxx(t) ,
[xxxT1 (t), . . . ,xxxTK(t)]T = JJJxxx(t), where JJJ , diag[JJJ1, . . . ,JJJK ]

and JJJ , diag[JJJ1, . . . ,JJJK ].
In analogy to [15], we define two (M − K) × (M −

K) covariance matrices RRRxxxxxx , E[xxx(t)xxxH(t)] and RRRxxxxxx ,
E[xxx(t)xxxH(t)]. Let γ1, . . . , γL ∈ C be the L GEVs of the ma-
trix pair (RRRxxxxxx,RRRxxxxxx) which have the largest amplitudes, then,

θl = sin−1
(

arg[γl]/(dπ)
)
, (3)

for l = 1, . . . , L, for details see [15].

3. THE DECENTRALIZED NON-HERMITIAN GED
In this section, we propose an online adaptive algorithm,
which tracks the generalized eigenvalues (GEVs) of the non-
Hermitian matrix pair (RRRxxxxxx,RRRxxxxxx) for each measurement
vector. First, we introduce the algorithm in a centralized
manner then we show how it can be implemented in a fully
decentralized fashion using averaging consensus (AC).

3.1. The Centralized Non-Hermitian GED
The lth GEV [19, p. 233] of the matrix pair (RRRxxxxxx,RRRxxxxxx) and
its corresponding right generalized eigenvector uuul are defined
as RRRxxxxxxuuul = γlRRRxxxxxxuuul. (4)

By multiplying Eq. (4) with RRR−1xxxxxx , the GED is reduced to an
eigendecomposition of the form

RRR−1xxxxxxRRRxxxxxxuuul = γluuul. (5)

In very large sensor networks, the dimensions of RRRxxxxxx are
very large, consequently, computing its inverse is impracti-
cal. Thus, iterative methods for finding γl and uuul from Eq. (5)

are sought. In these iterative methods, multiplying a vector
withRRR−1xxxxxx is achieved by iteratively solving a system of linear
equations, see [19, ch. 8] for example. In decentralized imple-
mentations, the iteration procedure results in a large undesired
communication cost. To overcome this problem, we propose
to approximate the matrix RRRxxxxxx, which has only L dominant
eigenvalues corresponding to the L DOAs [11], with

RRRxxxxxx ≈WWWΛΛΛWWWH , (6)

where ΛΛΛ , diag[λ1, . . . , λL] and WWW , [www1, . . . ,wwwL] are the
matrices containing the largestL eigenvalues ofRRRxxxxxx and their
corresponding eigenvectors, respectively. Substituting Eq. (6)
in Eq. (5) yields

WWWΛΛΛ−1WWWHRRRxxxxxxuuul = γluuul. (7)
We rewrite Eq. (7) in matrix form as

WWWΛΛΛ−1WWWHRRRxxxxxxUUU = UUUΓΓΓ, (8)

where ΓΓΓ , diag[γ1, . . . , γL] and UUU , [uuu1, . . . ,uuuL].
The sample estimates ofRRRxxxxxx andRRRxxxxxx can be defined as a

rank one update at each time t, as follows

R̂RRxxxxxx(t) = αR̂RRxxxxxx(t− 1) + xxx(t)xxxH(t)

R̂RRxxxxxx(t) = αR̂RRxxxxxx(t− 1) + xxx(t)xxxH(t),
(9)

where 0 ≤ α ≤ 1 is a forgetting factor [16]. Let Λ̂ΛΛ(t), ŴWW (t),
Γ̂ΓΓ(t) and ÛUU(t) be the sample estimates of ΛΛΛ(t),WWW (t),ΓΓΓ(t)
and UUU(t), respectively, at time t.

Our algorithm tracks Λ̂ΛΛ(t), ŴWW (t), Γ̂ΓΓ(t) and ÛUU(t) and up-
dates them according to the newly acquired measurement vec-
tors xxx(t) and xxx(t) at time t. The power method [19, p. 51]
is used for this update since even for non-Hermitian matri-
ces, the power iteration converges to the eigenvalue with the
largest amplitude [20].

Tracking ŴWW (t) is achieved by using the approximate si-
multaneous power method, which is proposed in [16] under
the name “natural power method” (NP2). At time t, the NP2
computes ŴWW (t) as follows

ŴWW (t) = YYY (t)CCC−1/2(t), (10)

where YYY (t) , R̂RRxxxxxx(t)ŴWW (t− 1) and CCC(t) , YYY H(t)YYY (t).
Substituting Eq. (9) in the definition of YYY (t) yields

YYY (t) = αYYY (t− 1) + xxx(t)yyyH(t) (11)

where yyy(t) , ŴWW
H

(t− 1)xxx(t) and the approximation ŴWW (t−
1) ≈ ŴWW (t − 2) is used [16]. Moreover, the matrix CCC(t) can
be written as

CCC(t)=α2CCC(t−1)+ccc(t)yyyH(t)+yyy(t)cccH(t)+ηxxx(t)yyy(t)yyyH(t),
(12)

where ccc(t) , αYYY H(t− 1)xxx(t) = α
(
CCC1/2(t− 1)

)H
yyy(t) and

ηxxx(t) = xxxH(t)xxx(t). Equations (10)–(12) represent the iter-
ation of the NP2 as introduced in [16]. Note that although
this iteration updates the eigenvectors of the matrix RRRxxxxxx, the
update of its eigenvalues ΛΛΛ(t) is not considered. Thus, we
propose to achieve the update of ΛΛΛ(t) as follows.

Substituting Eq. (9) in the definition of the eigenvalues

Λ̂ΛΛ(t) , ŴWW
H

(t)R̂RRxxxxxx(t)ŴWW (t) produces

Λ̂ΛΛ(t) = αŴWW
H

(t)R̂RRxxxxxx(t− 1)ŴWW (t) + yyy(t)yyyH(t). (13)
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In analogy to [16], we use the approximation ŴWW (t) ≈ ŴWW (t−
1), in Eq. (13) which yields

Λ̂ΛΛ(t) = αΛ̂ΛΛ(t− 1) + diag[yyy(t)� yyy∗(t)], (14)

where the off-diagonal elements of yyy(t)yyyH(t) are zeros since
both matrices Λ̂ΛΛ(t) and Λ̂ΛΛ(t−1) are diagonal. We remark that,
by using (10)–(12) and (14), we are able to track and update
both ΛΛΛ(t) andWWW (t). In the following, we apply the NP2 and
the proposed eigenvalues update in Eq. (14) to achieve the
GED of Eq. (8), i.e., to track γγγ(t) and UUU(t).

In analogy to Eq. (10), applying the NP2 to the eigende-
composition in Eq. (8) results in the following iteration

ÛUU(t) = ZZZ(t)GGG−1/2(t) (15)

where GGG(t) , ZZZH(t)ZZZ(t) and ZZZ(t) , ŴWW (t − 1)Λ̂ΛΛ
−1

(t −
1)ŴWW

H
(t − 1)R̂RRxxxxxx(t)ÛUU(t − 1). Substituting Eq. (9) in the

definition of ZZZ(t) yields

ZZZ(t) = αZZZ(t− 1) + hhh(t)zzzH(t), (16)

where zzz(t) , ÛUU
H

(t − 1)xxx(t) and hhh(t) , ŴWW (t − 1)Λ̂ΛΛ
−1

(t −
1)yyy(t) and yyy(t) , ŴWW

H
(t − 1)xxx(t) and the approximations

ŴWW(t− 2) ≈ ŴWW(t− 1) and ÛUU(t− 2) ≈ ÛUU(t− 1) are used.
The matrixGGG(t) can be rewritten as

GGG(t)=α2GGG(t−1)+ggg(t)zzzH(t)+zzz(t)gggH(t)+ηhhh(t)zzz(t)zzzH(t),
(17)

where ggg(t) , αZZZH(t − 1)hhh(t) = α(GGG1/2(t − 1))Hfff(t) and

fff(t) , ÛUU
H

(t − 1)hhh(t) and ηhhh(t) , hhhH(t)hhh(t). Similar to
our proposition in Eq. (14) the GEVs can be updated as

Γ̂ΓΓ(t) = αΓ̂ΓΓ(t− 1) + diag[fff(t)� zzz∗(t)]. (18)

Using Equations (15)–(18), we are able to track the gen-
eralized eigenvalues and eigenvectors of the matrix pair
(RRRxxxxxx,RRRxxxxxx).

The centralized tracking of the GEVs is summarized in
Algorithm 1. Note that we rearranged the steps and divided
them into two parts. Part I contains all the operations which
require communication between the subarrays in the decen-
tralized implementation that will be introduced later. Part II
contains local updates which are carried out at the subarrays
and do not require communication between the subarrays.

Since the GEVs corresponding to true sources have unity
amplitude [15], we introduce a weighting factor β(t), in
Part II of Algorithm 1, to impose this property of the GEVs.
The multiplication factor β(t) penalizes the measurements
xxx(t) and xxx(t) which produce GEVs with non-unity amplitude
as follows. First the iteration of Algorithm 1 is computed
with β(t) = 1 and the GEVs are computed. Then, we set

β(t) = exp
(
− | log(

1

L

L∑
l=1

|γ̂l(t)|)|
)

(19)

and we repeat only Part II of Algorithm 1. Since Part II
of Algorithm 1 contains only local updates, the communica-
tion cost required for imposing unity amplitude on the GEVs
is kept unchanged. We remark that the derivation of the steps
in Part II is achieved by using the penalized measurements
β(t)xxx(t) and β(t)xxx(t) instead of xxx(t) and xxx(t), respectively.

In the next section, we show how Algorithm 1 can be im-
plemented in decentralized fashion, using the AC algorithm.

Algorithm 1 Generalized Eigendecomposition
Step 0: Init ŴWW (0) and ÛUU(0) at random and orthogonalize
them. Set YYY (0), ZZZ(0),CCC(0),GGG(0), Λ̂ΛΛ(0) and Γ̂ΓΓ(0) to zero.
for each input xxx(t) and xxx(t) do

Part I: Network computation (AC)

Step 1 (AC1): yyy(t)← ŴWW
H

(t− 1)xxx(t)

Step 2 (AC1): yyy(t)← ŴWW
H

(t− 1)xxx(t)

Step 3 (AC1): ηxxx(t)← xxxH(t)xxx(t)

Step 4 (AC1): zzz(t)← ÛUU
H

(t− 1)xxx(t)

Step 5: hhh(t)← ŴWW (t− 1)Λ̂ΛΛ
−1

(t− 1)yyy(t)
Step 6 (AC2): ηhhh(t)← hhhH(t)hhh(t)

Step 7 (AC2): fff(t)← ÛUU
H

(t− 1)hhh(t)
Part II: Node computation (local update)

Step 8: YYY (t)← αYYY (t− 1) + β2(t)xxx(t)yyyH(t)

Step 9: ccc(t)← α
(
CCC1/2(t− 1)

)H
yyy(t)

Step 10: CCC(t)← α2CCC(t− 1) + β2(t)ccc(t)yyyH(t)+
β2(t)yyy(t)cccH(t) + β4(t)ηxxx(t)yyy(t)yyyH(t)

Step 11: ŴWW (t)← YYY (t)CCC−1/2(t)

Step 12: Λ̂ΛΛ(t) = αΛ̂ΛΛ(t− 1) + β2(t)diag[yyy(t)�yyy∗(t)]
Step 13: ZZZ(t)← αZZZ(t− 1) + β2(t)hhh(t)zzzH(t)
Step 14: ggg(t)← α(GGG1/2(t− 1))Hfff(t)
Step 15: GGG(t)← α2GGG(t− 1) + β2(t)ggg(t)zzzH(t)+

β2(t)zzz(t)gggH(t) + β4(t)ηhhh(t)zzz(t)zzzH(t)

Step 16: ÛUU(t)← ZZZ(t)GGG−1/2(t)

Step 17: Γ̂ΓΓ(t)← αΓ̂ΓΓ(t− 1) + β2(t)diag[fff(t)� zzz∗(t)]
Step 18: DOA estimation using Eq. (3).

end for

3.2. Averaging Consensus
Assume that the kth subarray stores a scalar χk(0). In the AC
algorithm, the average χ(0) , 1

K

∑K
k=1 χk(0), can be com-

puted in a decentralized fashion using only local communica-
tions between neighboring subarrays [14]. The AC algorithm
uses the following iteration

χ̃k(i) = χ̃k(i−1)+
∑
j∈Nk

ωj,k(χ̃j(i−1)− χ̃k(i−1)), (20)

where ωj,k is the weight associated with the communication
link between the jth and the kth subarrays and Nk is the set
of subarrays in the vicinity of the kth subarray. The AC algo-
rithm is initialized with χ̃k(0) = χk(0). We use the notation
(̃·) to denote that the resulting average estimate is available at
all subarrays.

Different alternatives for choosing the weights ωj,k exist,
e.g., we can choose

ωj,k =

{
1/max(card[Nj ], card[Nk]), if j∈Nk
0, otherwise; (21)

refer to [14] for more details.

3.3. The Decentralized GED
In our proposed decentralized implementation each subarray
stores locally the part of the variables ŴWW (t), ÛUU(t),YYY (t),ZZZ(t)
and hhh(t) which corresponds to its measurements. Thus we
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partition these variables as follows, ŴWW (t) , [ŴWW
T

1 (t) , . . . ,

ŴWW
T

K(t)]T , where the kth matrix block ŴWW k(t) is stored lo-
cally at the kth subarray. Note that in this partition, each sub-
array stores a part of the lth estimated eigenvector ŵwwl(t) ,
[ŵwwT

l,1(t), . . . , ŵwwT
l,K(t)]T . The same partition is assumed for

ÛUU(t),YYY (t),ZZZ(t) and hhh(t). Moreover, in our proposed decen-
tralized implementation, using the AC algorithm, the kth sub-
array maintains a local copy of the following variables ỹyyk(t),

c̃cck(t), ỹyy
k
(t), η̃xxx(t), z̃zzk(t), η̃hhh(t), f̃ffk(t), g̃ggk(t), ˜̂

ΛΛΛk(t), ˜̂
ΓΓΓk(t),

β̃k(t), C̃CCk(t) and G̃GGk(t), where (̃·) is used as in Section 3.2.
In Algorithm 1, we have arranged all operations which

require the AC algorithm in Part I. These operations are of two
types. The first type is matrix vector multiplication (MVM)
and includes steps 1, 2, 4 and 7. The second type is vector
vector multiplication (VVM) and it includes steps 3 and 6.
Step 1 which is a MVM can be rewritten as

yyy(t) = [ŵwwH
1 (t− 1)xxx(t), . . . , ŵwwH

L (t− 1)xxx(t)]T . (22)

The lth entry of the vector yyy(t) can be rewritten as an average
of K scalars which are distributed over the K subarrays as
follows [12, 21]

ŵwwH
l (t− 1)xxx(t) = K

( 1

K

K∑
k=1

ξl,k(t)
)
, (23)

where the scalar ξl,k(t) , ŵwwH
l,k(t − 1)xxxk(t) is computed lo-

cally at the kth subarray. In our decentralized implementa-
tion, the AC algorithm, introduced in Section 3.2, is used to
compute this average such that all subarrays maintain access
to this average. Thus, using L AC operations the kth subarray
computes a local estimate of yyy(t) which we denoted earlier as
ỹyyk(t). The remaining MVM operations are achieved in sim-
ilar manner. Also the VVMs in steps 3 and 6 are carried out
as in Eq. (23).

Note that Step 6 and all steps of Part II of Algorithm 1
are local steps, where the kth subarray computes either its lo-

cal copy of the variables ˜̂
ΛΛΛk(t),

˜̂
ΓΓΓk(t), C̃CCk(t), G̃GGk(t), βk(t)

and the L DOAs, or it computes the part of the variables
ŴWW (t), ÛUU(t),YYY (t),ZZZ(t) andhhh(t) which correspond to its mea-
surements.

4. COST ANALYSIS
In Algorithm 1, the AC algorithm is used for MVM in steps
1, 2, 4 and 7. Each of these MVMs requires L AC operations.
The AC algorithm is also used for VVM in steps 3 and 6.
Thus the communication cost associated with the Algorithm
at each iteration is 4L+ 2 = O(L) AC operations.

The memory required at each subarray is found by di-
rectly summing the memory cost of variables or part of vari-
ables which the subarray stores. This cost is 4LMk+2L2 =
O(LMk) +O(L2) floating-point numbers, where variables
costing less than L2 or MkL floating-point numbers are ne-
glected.

The steps of Algorithm 1 which are marked as AC1 do
not depend on each other and are carried out in parallel us-
ing 4L + 1 parallel AC algorithm. Note that running paral-
lel AC algorithms minimizes the latency and the communica-
tion overhead of our proposed algorithm. The same applies to

the steps which are marked as AC2.

5. SIMULATION RESULTS
We consider an array composed of K = 30 uniform linear
subarrays, where each subarray consists of Mk = 2 sensors.
The locations of the subarrays are generated at random using
a uniform distribution over the rectangle whose lower-left and
upper-right corners are (0, 0) and (10, 7), respectively. Two
nodes are connected if the distance between them is less than
2.5.

In the first simulation, the signals ofL = 3 equal-powered
stationary sources impinge onto the array from directions
−15◦, −3◦ and 25◦ with SNR = 10 dB. For each AC op-
eration, 6 iterations of Eq. (20) are carried out, using the
weighting scheme from Eq. (21). The forgetting factor is
taken to be α = 0.99. Fig. 1 illustrates the DOA estimates
obtained from one subarray for t = 1, . . . , 3000. Note that
after t = 500 our algorithm is able to resolve the three DOAs
within a reasonable accuracy.

In the second simulation, two equal-powered moving
sources with SNR = 10 dB are considered. The direc-
tion of the sources are changing linearly with time from
θ1 = 40◦ and θ2 = 0◦ at t = 0 to θ1 = 0◦ and θ2 = 40◦

at t = 3000. The parameter setup of the AC algorithm is
taken as in the first simulation. We set the forgetting factor
to α = 0.95. Fig. 2 and Fig. 3 display the estimated DOAs,
without weighting and with weighting, respectively, at one
subarray for t = 1, . . . , 3000. In both figures, our Algorithm
is able to track the DOAs after t = 200. However, when the
angular separation between the two sources is small, which
correspond to the region around t = 1500 in Fig. 2 and
Fig. 3, our algorithm is not able to resolve the two sources,
and a noisy GEV appears causing errors. In Fig. 2, the er-
rors around t = 1500 are larger compared with Fig. 3 where
we penalize measurements producing GEVs with amplitude
different than unity.

Note that in both simulations, each subarray can only esti-
mate one DOA, since each subarray has only 2 sensors, how-
ever, our algorithm is able to identify and track more than one
source.
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Fig. 1. Stationary sources

6. CONCLUSION
In this paper, we proposed a decentralized DOA tracking al-
gorithm, where subarrays cooperate with each other to track
more sources than individually resolvable by each subarray.
We proposed a weighting scheme to benefit from the fact that
the DOAs correspond to GEVs with unity amplitude. Our al-
gorithm is not restricted to DOA estimation but can also be
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Fig. 2. Tracking moving sources
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Fig. 3. Tracking moving sources with weighting

used for any GED of two covariance matrices even if one of
them is non-Hermitian.
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