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Abstract—The problem of receive antenna array calibration
in cases where the array is strongly spatially “over-sampled” is
addressed in this paper. We suggest a new technique wherein
spatially distributed strong clutter returns can be used for
calibration with the goal of minimizing the power at the output
of a number of antenna finger-beams steered into the invisible
domain. The calibration algorithm is analyzed using simulation
results and real over-the-horizon radar (OTHR) data to illustrate
the effectiveness of the proposed technique.

I. INTRODUCTION

The use of receive antenna arrays in a strong external

noise and clutter environment requires very low beampattern

sidelobes. In the case of over-the-horizon radar (OTHR) [1],

with the typical receive antenna dimensions of 2-3km, the

problem of antenna calibration is far from trivial. Normally,

complex calibration signal distribution networks are used

within the receive array to perform a first order calibration

of the individual receivers [3]. These types of calibration

techniques do not correct for errors external to the physical

receivers. This necessitates the use of external calibration

sources with certain requirements.

External calibration sources should be sufficiently far away

to operate in the antenna array far-field, but at the same time

their signal strength needs to be rather strong and sufficiently

clean. Typical ionospheric propagation via a skywave is often

corrupted by multimode or phase instabilities, thus causing

its wavefront purity/cleanness to be degraded. Moreover, in

order to achieve high peak-to-sidelobe ratios, the calibration

signal-to-noise ratio should be within the same dynamic range,

which means the calibration signal should be exceptionally

strong; a source in excess of 40dB SNR would be required

to achieve calibrated sidelobes on the order of -40dBc. These

quite contradictory requirements make it difficult to obtain a

calibration test signal across the entire HF (3-30MHz) band.

At higher frequencies above 20MHz, in [2] a calibration

procedure was proposed where full power HF backscatter

reflections from large orbiting objects, and in particular the

International Space Station (ISS), were used to calibrate an HF

OTHR receive array. Such a calibration procedure can only be

performed at night well above the maximal usable frequency

(MUF), when the impact of the ionosphere can be ignored.

Practical experiments have produced quite encouraging results,

despite the still observed sphericity of backscattered wave-

fronts and polarization fading phenomena [2]. Other authors

have proposed similar calibration techniques using special

purpose space calibration objects [4]. A detailed background

on all previous calibration methods applied to OTHR is beyond

the scope of this paper. The interested reader is directed to [5],

[6] as a starting point.

Obviously, the above mentioned calibration approach using

spaced based objects is completely inappropriate for nighttime

frequencies where strong ionospheric propagation exists both

day and night. It is also impractical to consider the installation

of several high power (kW level) dedicated source calibration

sources within the radar field of regard. If anything, the quality

of antenna calibration at these lower frequencies needs to be

better due to the significantly more powerful ambient noise

level (lower sidelobe requirement) [7].

In this paper we will introduce an array calibration tech-

nique that exploits significant array spatial over-sampling rates

(d = [λ/10, λ/5]). The requirements are a) clutter power

should be present at almost every visible angle and b) a

powerful enough transmit illuminator should be available to

produce strong CNR (clutter-to-noise ratio) on a per element

basis at the receive array. The application discussed in this

paper is with respect to a one-dimensional uniformly sampled

receive array, however the same method can be applied to

two-dimensional over-sampled arrays. Exact requirements for

spatial oversampling rates and required SNR will be explored

through simulation examples. Section II presents the over-

sampled array calibration technique. Section III presents se-

lected simulated and real data results. Section IV includes

concluding remarks.

II. CALIBRATION METHODOLOGY FOR OVER-SAMPLED

HF RECEIVE ANTENNA ARRAYS

Consider an N-element uniform linear antenna array (ULA)

with inter-element spacing d = λ/�, � = 2ρ (ρ ∈ [3, 5], typical

oversampling rate for OTHR receive array in the lower HF

band). The initial treatment of the problem will assume that

none of the array elements are faulty and only unknown am-

plitude and phase errors exist due to poor antenna calibration.

Under these assumptions, the antenna array manifold vector

a(θ) may be represented as [13]:

a(θ) = DeZsid(θ), (1)

where

sid(θ) = [1, ej2π
d
λ sin(θ), . . . , ej(N−1)2π d

λ sin(θ)]T , (2)

er = [(1 + a1)e
jφ1 , (1 + a2)e

jφ2 , . . . , (1 + aN )ejφN ]T ,(3)
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and

De = diag(er). (4)

The notation diag(er) refers to a diagonal matrix built with the

vector er. Here Z ∈ C
N×N is the mutual coupling matrix that

should be always considered for oversampled antenna arrays.

In most cases this is a banded matrix due to the physical

electromagnetic coupling of a single antenna element with

a limited number of surrounding elements. The number of

coupled elements does not exceed λ/2d (at every side of the

ULA element). In this study, similarly to [14], we consider

homogeneous mutual coupling as when the matrix Z is a band

Toeplitz matrix, with the width of this band equal to 2k+1�N.

It is straightforward to show that apart from the k edge

elements of the oversampled ULA, the following equation is

true

s(θ) = Tsid(θ)
k
= Zsid(θ) (5)

where the introduced symbol
k
= means strict equality for all

elements of the N-variate vector, excluding the first and last

k elements. The matrix T is a diagonal array spatial taper

matrix. A similar matrix is defined later in (14).

For this reason, a number (k) of so-called “dummy” antenna

elements are often used to augment operational N-element

antenna arrays in order to make this operational N-element

array fully homogeneous, with the equation,

a(θ) = Desid(θ) (6)

true for all N elements of this array, irrespective of homoge-

neous mutual coupling. Another option is to apply a heavy ta-

per that significantly reduces contributions of the edge antenna

elements. Both reasons allow us to ignore the homogeneous

mutual coupling in our efforts to calibrate out the amplitude

and phase errors (ai,φi) that occur in the antenna multichannel

feeder, LNA, and receiver systems. For non-homogeneous

mutual coupling described by a non-Toeplitz mutual coupling

matrix, the calibration problem is more complex and will be

addressed separately. For the model given in (6), we will use

s(θ) instead of sid(θ) and note that (6) may be equivalently

introduced as

a(θ) = diag(s(θ))er, (7)

and we will use this equivalent representation in derivation

that follows.

Consider the spatial frequency

μ = 2π
d

λ
sin(θ) =

π

ρ
sin(θ). (8)

The area of “visible” angles −90o ≤ θ ≤ 90o, calculated

from the boresight direction, corresponds to |μ| ≤ π
ρ , while

spatial frequencies within the range π
ρ ≤ |μ| ≤ π correspond

to “invisible” angles. Let us assume that the arc of visible

angles

−Ω0

2
≤μ≤ Ω0

2
,Ω0 =

2π

ρ
(9)

is uniformly occupied by strong clutter with power σ2
c . To

be clear, the term “invisible” angles corresponds to that part

of the unambiguous spatial frequency spectrum that does not

correspond to any possible real-world spatial source location

[8]. Let each receive element have internal white noise power

σ2
n which is uncorrelated between receivers. Even though

the sources of internal noise are independent, due to mutual

coupling the actual noise at the output of the multichannel

receiver is correlated with a hermitian covariance matrix

σ2
nRn [13]. Similarly, each receiver is corrupted by spatially

homogeneous external white noise with power σ2
ext. This term

can be subsumed into the clutter power component as they

both are spatially homogeneous and emanate only from the

visible region. This is in contrast to internal noise which

appears to emanate from both the visible and invisible regions.

Then the covariance matrix of the internal noise and clutter

at the output of the actual antenna array may be presented as

Rcr(Ω0) = De(σ
2
cCc(Ω0) + σ2

nRn)D
H
e , (10)

where the NxN matrix of the clutter covariance is defined as

Cc(Ω0)j,k = 2

∫ Ω0/2

0

cos(μ(j − k))dμ (11)

j, k = {0, 1, . . . , N − 1}.
This form for the clutter covariance follows directly from the

receive array manifold model (1) and the above mentioned

assumption that clutter power impinges on the array from all

directions with uniform power. More formally, the clutter plus

noise covariance could defined in terms of the expected value

operator. Therefore the components of the clutter covariance

can be expressed as

Cc(Ω0)j,k = Ω0
sin(Ω0/2(j − k))

Ω0/2(j − k)

=
Ω0

π
sinc

(
Ω0

2π
(j − k)

)
(12)

j, k = {0, 1, . . . , N − 1}
which is the well-known Slepian kernel and sinc(x) =
sin(xπ)/xπ [9], [11]. The noise covariance matrix Rn has

been included as a general covariance term because in theory

this noise component should exhibit some degree correlation

due to coupled internal noise. Further discussion can be found

in [10]. Simulated results in this paper utilize an internal noise

model dominated by uncorrelated white noise.

It was previously mentioned in the introduction that other

calibration techniques which employ line-of-sight objects re-

quire compensation for spherical wavefront curvature. This is

due to their inherent proximity to the receive array for which

far-field signal model assumptions no longer apply. In this

paper we assume that all sources of clutter to be used for

calibration arrive from sufficiently far ranges so that our far-

field model applies. In the skywave OTHR case, this is not

too onerous an assumption because typical backscatter clutter

is more than 500km in slant range and in addition, proper

range gating can be applied to limit the contamination of
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possible near-field sources. If however near-field sources were

to contaminate the clutter covariance matrix, their effect would

be negligible unless their azimuthal location was close to

the visible/invisible space boundary. Typical near-field/far-field

mismatches cause broadened mainlobes responses not sidelobe

distortion. Thus a near-field source located near the visible

space boundary could leak excess energy into the invisible

region via an overly broadened mainlobe response. Practically,

such an event would be very unlikely to occur since real arrays

have greatly diminished responses in the endfire direction.

The nominal (for an ideal antenna array with no error)

beamsteering vector for the beamsteer direction μ0 can be

written as

wi(μ0) = Ts(μ0), (13)

where μ0 is the beemsteer direction, −π ≤ μ0 ≤ π and

T = diag([t1, t2, . . . , tN ]) (14)

is the “taper” designed to achieve the required (low) sidelobe

level in the properly calibrated ULA. Let

Wi(μ0) = diag(wi(μ0)) (15)

be the diagonal matrix formed by this ideal beamfomer.

Let a correction vn be introduced that can be applied to

the ideal beamsteer vector to correct for phase and amplitude

errors. The beamsteer vector can then be written as

w(μ0) = diag(vn)Ts(μ0), (16)

or equivalently,

w(μ0) = diag(s(μ0))Tvn. (17)

If we introduce the notation

S(μ0) = diag(s(μ0)), (18)

then the output power for the beamformer in (17) is equal to

p(μ0) = wH(μ0)Rcr(Ω0)w(μ0) (19)

= vH
n THSH(μ0)De(σ

2
cCc(Ω0) + σ2

nRn)D
H
e S(μ0)Tvn.

Since T, S(μ0), and De are all diagonal matrices and therefore

commuting matrices, (19) could be written as

p(μ0) = wH(μ0)Rcr(Ω0)w(μ0) (20)

= vH
n DeT

HSH(μ0)(σ
2
cCc(Ω0) + σ2

nRn)S(μ0)TDH
e vn.

Now let

μj ∈ [−π,−π

ρ
] ∪ [

π

ρ
, π], j = 1, . . . , J (21)

correspond to a dense sampling of steer directions that pop-

ulate the entire invisible region. Then the total power due to

the output of all these beams will be

Pinv =
1

J

J∑
j=1

wH(μj)Rcr(Ω0)w(μj) (22)

= vH
n DeT

H(σ2
cC+ σ2

nR
inv
n )TDH

e vn.

where

C =
1

J

J∑
j=1

SH(μj)Cc(Ω0)S(μj) (23)

Rinv
n =

1

J

J∑
j=1

SH(μj)Rn(Ω0)S(μj). (24)

Note, it is important to correctly normalize (23) so that correct

absolute thresholds can be applied at later processing steps. In

the limit as all invisible space points are sampled (23) can be

expressed as

Cj,k = Cc(Ω0)j,k · 1

π − π
ρ

∫ π

π/ρ

cos(μ(k − j))dμ (25)

j, k = {0, 1, . . . , N − 1}.
The covariance can be further simplified to

Cj,k = Cc(Ω0)j,k
ρ

ρ− 1

(
1j−k − 1

ρ
sinc

(
1

ρ
(j − k)

))

=
Ω0ρ

π(ρ− 1)

(
1l − 1

ρ
sinc

(
l

ρ

))
sinc

(
Ω0

2ρ
l

)
(26)

l = j − k, (27)

1j−k = δ(j − k).

The above expression for the kernel (23) and (26) is only

exact if the clutter distribution is perfectly uniform. It has

been included for completeness as it is used in some of the

simulation results that will follow. In practice, this kernel is

estimated from training data. From (23) and (26) it follows

that by collecting the total power within the invisible area, we

are in fact collecting power of all the beampattern sidelobes,

except for the invisible region arc,

Ω0

2
≤ | μ | ≤ π

ρ
. (28)

Therefore, if strong clutter (and/or other interferers) occupy

the entire visual arc (Ω0/2 = π/ρ), then all the visual

arc sidelobes are represented in (23) and (26). Otherwise,

sidelobes from the arc (28) are not represented by the kernel

(23) and (26). The calibration vector vn that minimizes the

expression (22) is simply the minimum eigenvector of the

kernel expressed in (23) and (26).

Let us now consider the power output of (20) due to the

receiver noise component. Consider an uncalibrated beam

steered into the invisible region in the absence of clutter

power. In this case the calibration vector vn is set to en =
[1, 1, . . . , 1]T , the all ones vector. The resulting noise power

is

σ2
int = eHn DeT

HRinv
n TDH

e enσ
2
n. (29)

Estimation of this noise power can be accomplished by

collecting data during a “quiet” dwell, with the transmitter

switched off. This estimate of (29) will perform reasonably

well as long as the external-to-internal noise ratio σ2
ext/σ

2
n

does not exceed the peak-to-sidelobe ratio of the original

uncalibrated antenna array. Otherwise an estimate σ2
tr of the
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invisible space power level should be used which can be

derived from the data containing clutter returns.

σ2
tr = αeTn

⎛
⎝ 1

J

J∑
j=1

WH(μj)Rcr(Ω0)W(μj)

⎞
⎠ en (30)

where α is the designed level of beampattern sidelobes.

Now let UK = [u1,u2, . . . ,uK ] ∈ CNxK be the matrix of

K smallest eigenvectors of the kernel matrix in (22), where K

is selected according to the condition

K∑
j=1

λje
T
nuju

H
j en ≈

{
σ2
int, if available

σ2
tr, otherwise

(31)

and {λ1, . . . , λK} corresponds to the K smallest eigenvalues

of the aforementioned kernel arranged in ascending order.

This condition means that with the correction vector vopt(K)
defined as

vopt(K) = UKUH
Ken (32)

we obtain the total power collected by the beams steered

into the invisible domain equal to the power expected for the

properly calibrated antenna. Concurrently the vector (32) is

the one with the minimal total mean square error deviation

from the vector en, since

min
bK

‖UKbK − en‖22,bK ∈ CKx1 (33)

is minimized with bK = UH
Ken and therefore (32) holds.

The following list outlines the steps required to implement

the calibration algorithm in practice.

Calibration Algorithm Steps

1) Collect L array spatial snapshots X = [x1, . . . ,xL]

containing strong clutter power from all azimuths.

2) Form array spatial covariance estimate R̂ = 1
LXXH .

3) Compute the kernel C defined in (23) with the estimated

array spatial covariance substituted for the assumed

model.

4) Apply the desired array taper to the computed kernel

CT = THCT then find the eigenvectors U and eigen-

values Λ of this matrix.

5) Finally compute the correction according to (32) utiliz-

ing the known or estimated internal noise level to find

K according to (31).

III. RESULTS

In this section we will examine the performance of the

proposed array calibration method through simulation and real

data results. The following areas have been explored, but not

all are discussed due to space limitations: Subspace dimension

approximation, element CNR, frequency dependence, visible

region illumination coverage, and number of array snapshots.

In the simulations, the clutter has been generated by using

a simple far-field free space propagation model. No attempt

has been made to include ionospheric propagation effects.

This simple analysis method appears justifiable because no

strange ionospheric effects will adversely impact the algorithm

performance. Results using real data are further evidence of

this statement.

It is expected that there should be a strong dependence of

the accuracy of the calibration solution on the element level

CNR. Intuitively, one would expect the calibration accuracy to

suffer as the CNR level is decreased. Figure 1 shows the result

for CNR=50dB. At CNR=50dB we are close to achieving

near perfect calibration. The calibration results for CNR=30dB

(not shown) are decreased, but still very respectable. The

basic requirement is that enough CNR is required so that

the beampattern sidelobes are sufficiently visible in invisible

space above the internal noise floor. As mentioned in the

theoretical development, it is important to collect clutter power

from nearly all visible azimuth angles. One solution to acheive

uniform transmit illumination would be to use a single broad

coverage low power transmit antenna for calibration purposes.

However, an alternative could be to utilize a sequence of

stepped scanned narrow beam transmit beampatterns. Such a

method is applicable to high-power OTHR transmit phased

arrays. To illustrate the concept a simulation was run in which

a broad illumination pattern has been synthesized using 10

narrow beam transmit patterns stepped 10 degrees in azimuth

from ±45o. The result is shown in Fig. 2. Notice that the

broadened illumination pattern has restored a large amount of

the visible region sidelobe levels. We conclude by showing the

performance of the calibration algorithm on a real HF receive

array. The data was collected using a N=100 element system

without any bad elements. The collection was performed using

a high-power far field illumination source to act as a surrogate

plane wave emitter. The receive array has the same spacing

as used in the simulations in the previous section and data

was collected at 7.93MHz. Training data was collected by

sequentially illuminating 10 dwell regions spaced 10 degrees

in azimuth. A total of 5 multi-dwell sets were used. The result

of the calibration solution is shown in Fig. 3. First note that

the illumination source propagated over a multi-mode path and

as such there is not a single clean plane wave impinging on

the receive array. In this example normal system calibration

has been applied prior to the application of the improved

calibration solution. The uncalibrated solution is shown with

the circle trace. The average sidelobe level is well above -40dB

for all angles. Some regions of the invisible space contain

sidelobes as high as −30dB. Once the calibration solution

is applied, the sidelobes are reduced about 15dB in both

the visible and invisible regions. The designed ideal taper

has its first sidelobes 60dB down. The calibration solution

provides a great improvement, however there may still be

further improvements that can be made if more advanced

calibration methods are employed.

IV. CONCLUSION

This paper has presented a new receive array calibration

technique for spatially oversampled arrays. HF OTHR has

been the primary motivation for this work, however there is

no reason why the same algorithm can not be applied to more

general array applications. The operation of the algorithm has
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Fig. 1. Calibration solution using CNR=50dB. (a) Beamformer output power
as a function of all u-space angles. (b) Beampattern response for no errors,
no calibration, and estimated calibration. Note, invisible space region begins
at |u|=0.5.

−1 −0.5 0 0.5 1
−60

−40

−20

0

20

U−Space
(a)

M
ag

ni
tu

de
 (d

B
)

Power spectrum with K = 19 Subspace, CNR = 40 dB

No error
Uncalibrated
Calibrated

−1 −0.5 0 0.5 1
−100

−80

−60

−40

−20

0

U−Space
(b)

M
ag

ni
tu

de
 (d

B
)

Beampattern Response, N=100, K = 19, fc = 10.7729 MHz

Perfect
No Calibration
Calibrated

Fig. 2. Calibration solution using 10 narrow transmit beams spaced 10
degrees in azimuth. Beampattern response for no errors, no calibration, and
estimated calibration. Note, invisible space region begins at |u|=0.5.

been verified using both simulated and real HF OTHR data.

A key feature of the proposed calibration algorithm is that

it does not require the presence of a cooperative far-field

source. Rather, normal backscatter clutter data can be used

for calibration which can significantly reduce the scheduling

burden imposed by normal array calibration.
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Fig. 3. Real data calibration solution. Far-field illumination source has been
used to generate a plane wave source to examine array sidelobes. The no
calibration solution does include normal system calibration. Note, invisible
space region begins at |u|=0.36.
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