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ABSTRACT

Doppler-shift target localization has recently attracted re-
newed interest due to its wide range of applications. In this
paper we analyze the optimal sensor-target geometries for the
Doppler-shift target localization problem where the position
and velocity of a moving target are estimated from Doppler-
shift measurements taken at stationary sensors. The analysis
is based on minimizing the estimation uncertainty, which is
equivalent to maximizing the determinant of the Fisher in-
formation matrix. In particular, the optimal geometries that
maximize the estimation accuracy for target position only,
velocity only, and both position and velocity, are investigated.
The analytical findings are verified by numerical examples.

Index Terms— Optimal sensor placement, Doppler-shift
measurement, localization, Fisher information matrix

1. INTRODUCTION

Position and velocity estimation of a moving object using
Doppler-shift measurements has a long history [1, 2]. Re-
cently this problem has attracted renewed interest due to its
wide-ranging applications in radar, sonar, passive surveil-
lance, wireless sensor networks, acoustic source localization,
and satellite positioning and navigation [3-7]. Existing lit-
erature mainly focuses on examining the observability of
a Doppler-shift sensor system [6, 7], and developing target
localization and tracking algorithms for different applica-
tions [3-5]. In contrast, far less research attention has been
given to the performance of Doppler-shift target localiza-
tion. Among different factors such as measurement error,
number of sensors, and transmitted wavelength, the sensor-
target geometry plays a very important role in determining
the performance of Doppler-shift target localization [7].
Focusing on the sensor-target geometry, numerical ex-
periments were carried out in [8] to evaluate the localization
performance of moving submarine targets with four and six
fixed Doppler-shift sensors under different sensor geome-
tries. Simulation results on the geometric dilution of pre-
cision (GDOP) for bi/multi-static Doppler-shift radar were
reported in [7]. Recently, the optimal sensor placement for
the Doppler-shift target localization problem of a station-
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ary target using Doppler-shift measurements from multiple
moving sensor platforms has been derived in [9], where the
optimal angular separation between the sensors was shown
to depend on the noise levels and the angular velocities of
the sensors, and to be mathematically equivalent to the op-
timal angular separation problem for angle-of-arrival (AOA)
localization in [10].

In this paper, we analyze the optimal sensor-target ge-
ometries for the Doppler-shift target localization problem in
which the position and velocity of a moving target are esti-
mated using the Doppler-shift measurements obtained from
a number of stationary sensors. We adopt the minimization
of the area of the estimation confidence region, which is
equivalent to maximizing the determinant of the Fisher infor-
mation matrix (FIM), as the optimality criterion for sensor-
target geometries. This criterion, commonly known as the
D-optimality criterion [11], has been widely used to derive
the optimal sensor placement for different target localization
problems [9-13].

Depending upon applications, one may aim to optimize
the accuracy in position estimate only, velocity estimate only,
or both position and velocity estimates. In this paper, we de-
rive the optimal geometries for position estimate only. Our
analysis shows that more than one optimal solution exists.
An optimal solution is obtained when the sensor bearing an-
gles have the absolute value of 7/3 rad with a sign sequence
b; € {1, —1} minimizing (> bi/wi)2, where b; is the sign of
the bearing angle of the 7th sensor and wj is a positive constant
associated with the noise level and the sensor-target range of
the 7th sensor. Other optimal solutions can be generated from
this optimal solution by reflecting one or more sensors about
the target position. The optimal angular geometries for veloc-
ity estimate are more straightforward than those for position
estimate because the FIM component corresponding to veloc-
ity estimate is mathematically equivalent to the FIM for AOA
localization in [10] and range-based localization in [12]. This
equivalence has been reported in [6]. A preliminary result on
the optimal angular geometry for both position and velocity
estimates is also provided for the case of equal noise variances
and equal sensor-target distances with the number of sensors
being a multiple of four. The paper concludes with numerical
examples to corroborate the analytical findings.
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Fig. 1. Estimation of position and velocity of a moving target using
N stationary Doppler-shift sensors.

2. PROBLEM STATEMENT

Consider a Doppler-shift target localization problem in the
2D-plane where the position and velocity of a moving target
are estimated using the Doppler-shift measurements obtained
from N stationary sensors. The localization problem is de-
picted in Fig. 1, in which p = [p;,p,|T and v = [v,,v,]T
are the unknown target position and velocity, respectively,
with the superscript 7' denoting matrix transpose, and r; =
[z, ;)T is the position of the ith sensor withi = 1,..., N.
The Doppler-shift measurement at the ith sensor is given by

2d; C2fi(p—r)Tv

fi+ei, fi = fei s a

ey

Ji=

Here f.; is the carrier frequency of the transmitted signal at
the ith sensor, d; = ||p — r;|| is the distance between the
target and the ith sensor, c is the speed of signal propagation,
and e; is the zero-mean independent Gaussian noise error at
the ith sensor. Note that the error covariance F{e?} is usually
dependent on the target-sensor distances among other things.

Normalizing f; by the factor of 2 f. ;/c, the Doppler-shift
measurement at the ith sensor becomes

@)

Z; = z; +n; with Zi:di
7

where n; is the measurement error with E{n?} = o2 (i.e.,
E{e?} = 4f2,07/c*). Writing the Doppler shift measure-
ment (2) in vector form gives

i:Z+n:[217"'5ZN]T+[nla"'anN]T (3)

with the error covariance matrix of ¥ = FE{nn’} =
diag(c?,...,0%).

Solving (3) for x = [p? v in the least-squares sense
requires at least four Doppler-shift measurements (i.e., N >
4). However, more than one solution (ghost target) exists
for N = 4 and hence prior information about the region
where the target lies and the velocity range of the target is
required [6]. Therefore, at least five Doppler-shift measure-
ments (i.e., NV > 5) are needed to provide a unique solution

for the unknown x.

With the independent Gaussian noise error for Doppler-

shift measurements, the FIM for the considered Doppler-shift
target localization problem is given by

& =JIx"1J, 4)

where Jo = [uy, ..., uN]T is the Jacobian matrix of z in (3)
evaluated at the true value of x with

d%(vac sin? ; — v, sin §; cos 6;)
d%_ (vy cos? 0; — v, sin 0; cos 0;)
cos b;
sin 6;

&)

u; =

Here, 0; denotes the bearing angle of the ith sensor as illus-

trated in Fig. 1.
Without any loss of generality, we rotate the coordinate
system so that v, = V and v, = 0, where V is the target

speed. Consequently, the FIM becomes

N
1 P (3]
P = —wul = pe Py } 6
P 01‘2 7 |: (ng (I’VV ( )
where
P i & sin? 6, —sin? 6; cos 6,
pp — od? | — sin® 6, cosB; sin?6; cos? 6;
.. i i cos? 6; sin 6; cos 6;
M — o2 | sin®;cosb; sin? 6,
B — ZN: 1% sin? 6; cos 6, sin® 0,
PV " Lug2d; | —sinb;cos?0; — sin®#6; cos®; |-

)

In practice, the true target velocity is not available, but it can
be approximated by an estimate obtained from sensor mea-
surements.

In this paper, we aim to derive the optimal sensor-target
geometries for Doppler-shift target localization by minimiz-
ing the area of the estimation confidence region. For an ef-
ficient unbiased estimator, the area of 1-o error ellipse, i.e.,
the 39.4% confidence region is inversely proportional to the
determinant of the FIM matrix [14]. Thus, minimizing the
area of the estimation confidence region is equivalent to max-
imizing the determinant of FIM. As a result, the optimization
problem is now defined as

{67,...,0n} = argmax |F| 3
91,...,6‘]\]}
where | - | denotes matrix determinant and § is ®pp (the

FIM component corresponding to position estimate), P,
(the FIM component corresponding to velocity estimate), or
the complete FIM matrix ® depending upon the optimiza-
tion objective. It is noted that the Doppler-shift localization
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algorithm under consideration is assumed to be nearly effi-
cient and unbiased so that the estimation error covariance can
be approximated by its Cramér-Rao lower bound (CRLB),
i.e., the inverse of FIM, and the FIM in (6) can be used to
characterize the estimation performance.

3. OPTIMAL GEOMETRY ANALYSIS

3.1. Optimal angular geometries for position estimate

To optimize the accuracy in position estimate, we aim to max-
imize the determinant of @, which is the FIM component
corresponding to position estimate. From (7), the determinant
of ®pp, is given by

N -4 N - 2 2
sin” 6; sin“ #; cos” 0;
d _ V4 [ i 7
Per {Z AE L o
N . 3 2
sin® 6; cos 6;
X)) - @
i=1 i

To reveal the similarity between |®5,| and the determinant of
FIM for multistatic time-of-arrival localization with a single
transmitter and multiple receivers in [15], we let a; = 26;
and substitute 6; = «; /2 into (9), which yields

1 (1 —cosa;)? Y sin? o
e A DR v ) D=

i=1 i=1
N 2
(1 —cosay;)sina;
(> 2.7 . (10)
i=1 i
Let 5; = m — «; (i.e., cosa; = cos(m — f3;) = —cos fB; and

sinoy; = sin(m — ;) = sin §;). Then |®p| becomes

@, = V74 ﬁ: (1 + cos 3;)? ﬁ: sin? §;
PPI™ 16 O’?d% J?d%

=1

N (14 cos Bi)sin i )
—<Z( C‘;}d?)sm . (1)

=1

i=

To find the optimal angular geometry, |®pp| is maximized
with respect to [, ..., Sy for given values of o1,...,0p,
di,...,dy. The optimal values of 6;,...,6y then follow
from 6; = (m—f3;)/2. Note that the optimal angular geometry
for position estimate does not depend on the target speed V.

The solution for maximizing (11) in terms of 31, ..., By
is given as follows [15]. For given values of o1,...,0xN,
di,...,dn, |®ppl| is maximized at

® _27V2N12Nb;“212
[Boplna = =525 Zaw - Za2d2 (12)

i=1 1 i=1 1
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Fig. 2. An example of generating new optimal configurations from
initial optimal configuration €o for position estimates. Here sensors
A, B and C are reflected about target.

when |3f| = n/3 foralli = 1,...,N and b} = sgn(B;)

satisfies
N 2
b;
—— 1
<Z U%ﬁ) (13)

i=1

{b7,....b5} =

arg min
b;e{1,-1},1<i<N

with sgn(-) denoting the signum function.

The optimal bearing angles 67, ..., 0% are given by:

o If 8 =7/3, then §f = w/3 or —27/3.

o If 8 = —7/3,then 0 = —7/3 or 2m/3.

It is apparent from 3 to 6 transformations that more than

one optimal angular geometry exists. All the optimal angu-

lar sensor-target configurations can be found by the following
approach:

1. Find the initial optimal configuration, referred to as con-
figuration €o, by setting |0F| = w/3 foralli =1,..., N,
and sgn(67) = b} according to (13).

2. Other optimal configurations are obtained by moving one
or more sensors from r; to 2p — r;, i.e., reflecting one or
more sensors about the target as illustrated in Fig. 2.

3.2. Optimal angular geometries for velocity estimate

Referring to (7), the determinant of ®.,, the FIM component
corresponding to velocity estimate, is given by

N 2 N . 2
1 1 sin 20;
|®yy| = 1 <Z 02> - (Z p )

=1 1 i=1 4

N 2
- (Z C02§9i> (14)

i=1 4

which is mathematically equivalent to the determinant of the
FIM for AOA localization [10] and range-based localiza-
tion [12]. The solution for maximizing (14) with respect to
01, ...,0xN can be found in [10].
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3.3. Preliminary results on optimal geometries for both
position and velocity estimates

The optimal angular geometries for position estimate and for
velocity estimate obtained in sections 3.1 and 3.2 are differ-
ent. In many applications, the estimation accuracies in both
target position and velocity are required to be optimal. This
can be achieved by maximizing the determinant of @ in (6).
However, ® is a 4 x 4 matrix and hence deriving a closed-
form solution for maximizing |®| is a very challenging task.

Optimal geometries produce diagonally dominant, or
where possible, diagonal FIMs. In what follows we propose
a method for finding the optimal geometry for N = 4k (k =
1,2,...)withoy, = -=oy=candd; =---=dy =d.

As @ is a symmetric positive semi-definite matrix, i.e,
@ > 0, the following Hadamard’s inequality holds [16]

|®| < P110220330P44 (15)

where ¢11,...,¢4q4 are the diagonal elements of ®. The
equality in (15) holds if and only if ® is diagonal. Using (7)
and (15), we obtain

N N

Vi, N
|®| < pcyr Zai Zai(l —a;) Z(l —a;) Zai (16)
i=1 i=1 i=1 i=1

where a; = sin’#6;. Applying the arithmetic and harmonic
means inequality [17], we have

N 2
CEFTE ) SRS SIIEVE) o)
=1 i=1 =1
a7
with equality if and only if >N a23 N (1 — az) =
SN L ai(1—a;) SN | a; which is achieved when N 3"~

= (Zf;l ai)z. Based on the power mean inequality [17],
this can only be achieved whena; = --- = ay.
To maximize the term inside the square operation of (17)

N N N N 2
f:NZa?—QZa?Zai—&-(Zai) (18)
=1 =1 =1 =1

we set

g£:2{<1v—2§;ai>al (Za f:%z)}

Noting that N — 2 va 1a; =0and va 1 a; —
cannot hold at once because it requires S~ | a; = S
N/2 which cannot be satisfied as 0 < a; < 1, (19) is satlsﬁed
foralle=1,...,Nif
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alz...

I

S
=
\
2

N N
C2im1 % Qi a7 ' (20)

Hence f has two critical points:
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Fig. 3. Optimal geometry for both position and velocity estimate.

e Minimum point: a; = --- = ay = 0 with f = 0.

-=ay =2/3 with f = %.
From the above analysis, we can see that sin? 0; = 2/3 for
all: = 1,..., N will satisfy the equality conditions of (16)
and (17) as well as maximizing f in (18). To satisfy the
equality condition of (15) (i.e., ® is diagonal), the number
of sensors is required to be a multiple of four (N = 4k with
k=1,2,...). Thus, the optimal geometry is given by

e Maximum point: a; =

arcsin(2/3) — 180° = —125.26°, i = 1,...,k
—arcsin(2/3) = —54.74°, i =k +1,...,2k
arcsin(2/3) = 54.74°, i =2k + 1,...,3k

180° — arcsin(2/3) = 125.26°, i = 3k + 1,...,4k

which is illustrated in Fig. 3. The resulting value of determi-

nant of FIM is | @ e = (4255
the optimal geometries for position only and velocity only in
section 3.1 and 3.2, reflecting the sensors about the target will
change ® and hence affect the optimality of the sensor-target
geometry for both position and velocity estimates.

Deriving the optimal geometry for N # 4k is more chal-
lenging as ® cannot be made diagonal for sin?f; = .- =

sin? v = 2/3. This will be considered in our future work.

2
) . Note that, in contrast to

4. NUMERICAL EXAMPLES

In this section we verify the analytical findings for the opti-
mal angular geometries by way of numerical examples. To
numerically find the optimal global maxima of determinant
of FIM, we employ the genetic algorithm [18]. The genetic
algorithm is halted if the average relative change in the best
fitness function value over 50 consecutive generations is less
than or equal to 10~'® for Table 1 and 2, and 1073 for Ta-
ble 3, or if the number of iterations reaches the limit of 5000.

Tables 1 and 2 report the numerical solutions of the op-
timal geometries for position estimate, averaged over 6000
runs, after eliminating the wrong solutions and transforming
all the remaining solutions back into configuration €, for dif-
ferent noise variances and target-sensor ranges with N = 4
and 5, respectively. By comparing the numerical solutions in
Tables 1 and 2 and the analytical results of configuration €,
derived in section 3.1, we observe a perfect agreement be-
tween the simulation and analytical results.
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01 02 03 04
Case 1*  60.00° 60.00° —60.00° —60.00°
Case 2° 60.00° 60.00° 60.00° —60.00°
Case 3° 60.00° —60.00° —60.00° 60.00°
Ty = -+ = wy = 1 with w; = 02d? (the permuta-

tions of the sensors are allowed).
by =1, we = 1/2, w3 = 1/3,wy = 1/6.
Cwi =1we=1/2,ws =1/3,ws =1/4.

Table 1. Genetic algorithm solutions for N = 4.

01 02 03 04 05
Case 1* 60.00°  60.00° 60.00°  —60.00° —60.00°
Case 2° 60.00°  60.00° 60.00° 60.00°  —60.00°
Case 3° 60.00° —60.00° —60.00° —60.00° 60.00°
Ty =---=ws = 1 withw; = 07d? (the permutations of the

sensors are allowed).
P wp =1, we = 1/2,w3 = 1/3,ws = 1/4,ws = 1/10.
Cwi =1lLwe=1/2,ws =1/3,ws =1/4,ws = 1/8.

Table 2. Genetic algorithm solutions for N = 5.

91 02 93 04
—125.26° —54.74° 54.74° 125.26°

Note: the permutations of the sensors are allowed.

Table 3. Genetic algorithm solution of optimal geometry for both
position and velocity estimates.

Table 3 shows the numerical solution of the optimal
geometry for both position and velocity estimates, aver-
aged over 6000 runs, for 67 = --- = oy = 1 m/s,
di = -+ =dy = 1lkmand V = 50 m/s with N = 4.
We observe that the numerical solution in Table 3 exhibits a
perfect match with the analytical result derived in section 3.3.

5. CONCLUSION

This paper has investigated the optimal sensor-target geome-
tries for Doppler-only target localization based on maximiz-
ing the determinant of FIM. Our analysis showed that the
optimal geometries for position estimate are not unique as
the FIM for position estimate is invariant to sensors being re-
flected about the target. Therefore, from an initial optimal
configuration Co, a multitude of optimal configurations can
be generated simply by reflecting one or more sensors about
the target. The optimal angular geometry for velocity estimate
is mathematically equivalent to the optimal angular geometry
problem for AOA localization in [10] and range-based local-
ization in [12]. A preliminary result was also provided on the
challenging problem of finding an optimal geometry for both
position and velocity estimates. The analytical findings of the
paper were demonstrated via numerical examples.
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