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ABSTRACT

In this paper, we propose to address the moving average (MA)

parameters estimation issue based only on noisy observations

and without any knowledge on the variance of the additive

stationary white Gaussian measurement noise. For this pur-

pose, the MA process is approximated by a high-order AR

process and its parameters are estimated by using an errors-

in-variables (EIV) approach, which also makes it possible to

derive the variances of both the driving process and the addi-

tive white noise. The method is based on the Frisch scheme.

One of the main difficulties in this case is to evaluate the

minimal AR-process order that must be considered to have

a “good” approximation of the MA process. To this end, we

propose a way based on K-means method. Simulation results

of the proposed method are presented and compared to exist-

ing MA-parameter estimation approaches.

Index Terms— Moving average model, autoregressive

model, errors-in-variables (EIV), K-means classification.

1. INTRODUCTION

In various applications of signal processing, a priori mod-

eling is of interest. Among the models that are often used

in speech and audio processing, radar as well as biomedical

applications, many authors have focused their attentions on

the estimation of the autoregressive (AR) and moving aver-

age (MA) parameters for the last decades. Thus, various ways

exist to deduce the AR parameters from the observations by

using for instance the Yule-Walker (YW) equations, or online

approaches based on the LMS, RLS, etc. Concerning the MA

parameters, we can organize the estimation methods in the

five main following families:

1. The maximum likelihood (ML) estimation of the MA

parameters leads to a highly non-linear problem. To

reduce the computational cost, Stoica et al. [1, 2] have

proposed covariance fitting approaches. When using

the so-called “basic method”, the first step consists in

searching a semi-definite positive matrix, whose sum of

each diagonal, either main or secondary, corresponds

to the covariance function estimated from the data, for

successive lags. This leads to a non-convex minimiza-

tion problem, that can be seen as a semi-definite pro-

gramming (SDP). It can be solved by using libraries

that are available on websites or in some toolboxes such

as in [3]. Then, the MA parameters can be obtained by

using a spectral factorization. It should be noted that

to perform the second step the estimated covariances

must form a “valid” MA covariance sequence, i.e. a se-

quence guaranteeing the positivity of the corresponding

power spectral density (PSD), see [4] or [5]. Variants of

the basic method have also been proposed for instance

in [6] in which the purpose is to estimate the covariance

matrix rather than the covariance function itself.

2. In Durbin’s method, the MA process is first approxi-

mated by a high-order AR process [7]. The AR pa-

rameters are estimated by using a least-squares (LS)

method. Then, the corresponding MA parameters can

be deduced from the estimated AR parameters.

3. An alternative method [8] is to compute the inverse

Fourier transform of the inverse of the MA PSD in or-

der to obtain the so-called inverse covariance sequence.

Then, the MA parameters can be estimated by means

of the Yule-Walker (YW) equations.

4. The fourth family includes the “vocariance” ESPRIT

method and “vocariance” recursion method which are

based on the cepstrum. For more details, the reader can

refer to [9, 10].

5. Finally, some methods proposed in the literature are

based on higher-order statistics, such as in [11, 12].

However, in various cases, the observations may be dis-

turbed by an additive noise. This model parameter estimation
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issue has been widely studied when dealing with an AR pro-

cess (resp. a time-varying AR process) disturbed by an ad-

ditive white noise. See for instance [13–17] (resp. [18]). It

has been also investigated more recently in [19] when the AR

process is disturbed by a MA noise. However, few authors

have addressed this problem for MA parameters when the MA

process is disturbed by an additive stationary white Gaussian

noise (AWGN) [20,21]. For this reason, this paper deals with

the identification of noisy MA processes. More particularly,

we propose to approximate the MA process by a high-order

AR process. Then, we derive an errors-in-variables (EIV) ap-

proach that makes it possible to estimate both the AR model

parameters and the variances of the driving process as well

as the additive white measurement noise. The main idea of

this approach is that the noisy-observation correlation matrix,

compensated by a specific diagonal matrix, must be positive

semi-definite and its kernel is defined by the AR parameters.

According to the Frisch scheme [22], given a trial order for

the AR model, there exists a set of diagonal compensation

matrices satisfying the above mentioned property that defines

a convex curve. Moreover, all the curves associated with or-

ders equal or greater than the true one exhibits a common

point in the asymptotic case. The AR parameter estimation

can thus be based on this property. The variant we propose

includes a way to select the order of the AR process that must

be defined to have a “representative” approximation of the

MA process.

To illustrate the performance of our proposed method, a

comparative study is carried out with the standard existing

methods, recalled in the above state of the art. We also ana-

lyze the limits of our proposed method versus the signal-to-

noise ratio (SNR), the number of samples available and the

positions of the zeros of the MA process1.

The remainder of this paper is organized as follows: In

Section 2 we give the system model. Section 3 describes the

proposed identification procedure. In Section 4, simulation

results are presented where a comparative study is done with

the existing methods. Some conclusions and perspectives are

given in Section 5.

2. SYSTEM MODEL

Let x(n) be a qth-order MA process defined as follows:

x(n) =

q
∑

i=0

biu(n− i) (1)

1The MA process can be seen as a filtering of a white noise. The corre-

sponding transfer function is only defined by its zeros. They are called the

zeros of the MA process.

where u(n) is a zero-mean white Gaussian driving process

with variance σ2
u, {bi}i=0,...,q are the MA parameters2 while

b0 = 1 to guarantee the identifiability of the generic driving

noise variance. Then, the MA process is assumed to be dis-

turbed by a zero-mean AWGN with variance σ2
w, denoted by

w(n), which is uncorrelated with the driving process u(n), to

form the noisy observations y(n), whose nth sample is de-

fined as follows:

y(n) = x(n) + w(n) (2)

In the following, we assume thatN noisy observation samples

{y(n)}Nn=1 are available. The nth MA vector of length r+1,

denoted by xn, is defined as follows:

xn = [x(n), x(n− 1), . . . , x(n− r)]T (3)

Let yn be the nth noisy-observation vector of length r+1,

which is similarly defined as xn, and let Rr+1
y be the corre-

sponding autocorrelation matrix.

Rr+1
y = E[yny

H
n ] = Rr+1

x + σ2
wI

r+1 (4)

where Rr+1
x = E[xnx

H
n ] is the MA correlation matrix and

Ir+1 is the identity matrix of size (r + 1)× (r + 1).
Here, the objective is to estimate the MA parameters only

on the basis of the noisy observations {y(n)}Nn=1 and with-

out any a priori information on the AWGN. For this purpose,

the MA process is approximated by a rth-order AR process,

where r is high enough and is defined as follows:

x(n) ≈ −

r∑

i=1

aix(n− i) + u(n) (5)

where {ai}i=1,...,r are the AR model parameters. It should be

noted that one way to deduce the set {ai}i=1,...,r is to use the

YW equations where the correlation function of the MA pro-

cess, denoted as Rxx(τ) is defined as mentioned in footnote

2. However, one of the key issues is the selection of the order

r. It is known that when the zeros are close to the unit circle in

the z-plane, the order must be very high. In the next section,

we propose a way to select r and to deduce AR parameters by

means of EIV approach.

3. PROPOSED APPROACH

3.1. EIV for true rth-order AR process identification

For a true rth-order AR process, (5) becomes:






x(n) = −
r∑

i=1

aix(n− i) + u(n)

ai = 0 (for i > r)

(6)

2It is well known that the correlation of x(n) satisfies :

Rxx(τ) =















σ2

u

q
∑

i=τ

bibi−τ (if |τ |≤ q)

0 (otherwise)
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Let Θr+1 be the AR parameters vector,

Θr+1 = [1, a1, . . . , ar]
T (7)

By defining the following vector,

xn = [x(n)− u(n), x(n− 1), . . . , x(n− r)]T (8)

(5) can be written as follows:

R
r+1

x,u Θr+1 = 0(r+1)×1 (9)

where R
r+1

x,u = E[xnx
H
n ] and Θr+1 is hence the kernel of the

matrix R
r+1

x,u . However, in practice, only noisy observations

are available (see (2)). Since E[x(n)u(n)] = σ2
u, it follows

that,

R
r+1

x,u = Rr+1
x − diag[σ2

u,01×r] (10)

Therefore, by using (4) and (10), we can rewrite (9) as fol-

lows:

(Rr+1
y − diag[σ2

w + σ2
u, σ

2
w11×r])Θr+1 = 0(r+1)×1 . (11)

Given (11), the AR model parameters as well as the variances

of both the driving process and the AWGN can be derived by

using the EIV approach [14, 23]. To this end, given a trial

order ρ, let us consider the set of couples (α, β) with β ≥ α

such that:

Rρ+1
y − diag[β, α11×ρ] ≥ 0 (12)

i.e. the matrix (12) must be positive semidefinite and singular.

This set defines the points of a convex curve belonging to the

first quadrant of the (αβ)-plane3. Every point P = (α, β) of

this curve can be associated with a coefficient vector Θρ+1

that can be obtained from the kernel of the matrix (12).

Because of (11), the point P a = (σ2
w, σ

2
w + σ2

u), whose

elements are the true driving noise and measurement noise

variances, belongs to all the curves related to orders ρ ≥ r

and the following relations hold:

(Rρ+1
y − diag[σ2

w + σ2
u, σ

2
w11×ρ])Θ

a
ρ+1 = 0(ρ+1)×1 (13)

where

Θa
ρ+1 = [1, a1, . . . , ar, 0, .., 0

︸ ︷︷ ︸

ρ−r

]T (14)

The above mentioned property makes it possible to determine,

in the asymptotic case, the point P a and then, the true AR

coefficients by means of (11).

In practice, the covariance matrices of the noisy observa-

tions Rρ+1
y , (ρ = 1, 2, ...) must be replaced by their sample

estimates. The resulting curves for ρ ≥ r no longer share

any common point. To identify the AR parameters, it is thus

necessary to introduce suitable selection criteria, such as the

shifted relation criterion or the Yule-Walker equations based

criterion described in [14].

3.2. EIV for MA process identification

In this work, as the MA process is approximated by a high-

order AR process, there is in theory no common point be-

3α stands for the abscissa while β stands for the ordinate.
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Fig. 1. Classification of the EIV curves of rth-order AR pro-

cess using k-means algorithm, r = 4, .., 30, dotted curves:

class 1 (C1), solid curves: class 2 (C2), N = 256
SNR= 15 dB

tween the convex curves. Nevertheless, when the AR pro-

cess order ρ is above a certain threshold ρmin (which is high

enough), the AR parameters {ai}i=ρmin,...,ρ tend to be close

to zero and the corresponding spectrum and correlation prop-

erties do not change much. Therefore, the resulting convex

curves tend to be close one another, especially in a certain

region of the (αβ)-plane. In this case, the main issue when

using the EIV approach consists in determining the minimal

order of the high–order AR process that is required to have

a “good” approximation of the MA process. To ensure this

latter, we suggest using a method based on the k-means clas-

sification algorithm [24]. For this purpose, the EIV approach

is first applied for different values of ρ varying from a lower

bound (e.g. ρ = 4) to an upper bound (e.g. ρ = 30), both

chosen by the user. Then, the resulting convex curves are

classified into two classes, as shown in the example of Fig.

1. To give some details about the classification, it operates

as follows: as depicted in Fig. 1, a specific angle ψ is de-

fined to generate a straight line in the first quadrant of the

(αβ)-plane. Its intersections with the convex curves provide

a set of points that are then separated into two clusters. The

first one, denoted C1, corresponds to the AR orders which are

below a certain minimal required order, denoted by r0. The

second one, denoted C2, corresponds to the AR orders which

are greater than or equal to r0. Once the minimal order is es-

timated, the EIV-approach, initially proposed for the AR pro-

cess, is applied on the second classC2. In this work, the point

P a is obtained by minimizing the sum of distances between

successive curves belonging to the class C2. In Fig. 2, we

give the true MA spectrum as well as the corresponding AR

spectrum based on (5) using YW method and the estimated

AR spectrum using the EIV approach. The three curves are

very close one another.
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Fig. 2. MA process spectrum approximated by AR process of

order r = 20, z1 = 0.6ejpi/8, z2 = 0.7ej5pi/6 SNR= 15 dB,

100 RUNS

4. SIMULATION RESULTS

4.1. Simulation protocol

The proposed method is compared to the following MA esti-

mation methods: Durbin’s method (DM) and the inverse co-

variance matrix (ICM).

The performance are measured in terms of spectral error

distance between the original spectrum S(f) and its estima-

tion Ŝ(f). The Itakura-Saito (IS) spectral distance is consid-

ered and defined as follows:

DIS(S, Ŝ) =
1

N

N∑

m=1

[

S(fm)

Ŝ(fm)
− log

S(fm)

Ŝ(fm)
− 1

]

(15)

According to preliminary tests, we noticed that the estimation

of the driving process variance with DM and ICM methods

fails on account of a numerical problem (negative values of

σ̂2
u). For this reason, and unlike our proposed method, the

variance of the driving process is assumed to be known in

DM and ICM. The MA process is defined by its zeros whose

modulus are not too close to 1. The performance are measured

as a function of SNR and number of available noisy observa-

tions N . The AR order was selected by using our proposed

method.

4.2. Results and discussion

Tab. 1 and Tab. 2 give the IS spectral distance measurements

where we compare our proposed approach with DM and ICM

methods.

Results in Tab. 1 and Tab. 2 are given respectively for a

number of noisy observations N of 4096 and 2048.

In Tab. 1, the proposed approach outperforms the other meth-

ods for SNR values of about 8 to 15 dB. When the SNR is

relatively low (SNR=5 dB), the performance degrade but still

Table 1. Itakura-Saito spectral distance when the zeros are

far from the unit circle, z1 = 0.3ejπ/8, z1 = 0.4ej5π/6

N = 4096, ρ = 17, σ2
u = 1, RUNS= 30

❳
❳
❳
❳
❳

❳
❳
❳
❳

Methods

SNR
15 dB 12 dB 8 dB 5 dB

Proposed method 0.4519 0.41 0.5747 2.8611

ICM 0.59 0.604 0.770 3.071

DM 0.549 0.550 0.710 3.014

Table 2. Itakura-Saito spectral distance when the zeros are

far from the unit circle, z1 = 0.3ejπ/8, z1 = 0.4ej5π/6

N = 2048, ρ = 15, σ2
u = 1, RUNS= 100

❳
❳
❳
❳
❳

❳
❳
❳
❳

Methods

SNR
15 dB 12 dB 8 dB 5 dB

Proposed method 0.3773 0.2648 0.3919 1.179

DM 0.514 0.565 0.593 1.521

ICM 0.504 0.557 0.594 1.527

remain advantageous for our proposed method. The same per-

formance analysis can be concluded from Tab. 2 when the

number of noisy observations decreases. It should be noted

that our proposed approach jointly estimates the AR param-

eters with both driving noise and AWGN variances without

any a priori information. This is not the case of DM and ICM

methods where only the AR parameters are estimated. In ad-

dition, the driving process have to be preliminary estimated

with another approach (for the results above, this value is pro-

vided by our proposed approach). It can be concluded that the

proposed identification procedure performs better than DM

and ICM methods; this is all the more significant as both the

SNR and the available number of observations increase.

We also note that the use of the clustering k-means

method to classify the EIV curves and select the minimal

required AR order is necessary for the “good” behavior of the

proposed method.

5. CONCLUSION AND PERSPECTIVES

In this paper, we address the estimation of MA models dis-

turbed by an AWGN. For this purpose, the MA process is

approximated by a high-order AR process. The greater the

value of AR order r is, the better the approximation of the

MA process is. However, when the AR order is very high,

the computational cost of the whole identification procedure

increases. To this end, an approach based on the K-means

clustering method combined with an EIV approach is used to

determine the minimal order of the AR process. Given the

proposed method, we can get an estimation of the MA spec-

trum. Under some assumptions regarding the zeros of the MA

process (i.e. in the unit circle in the z-plane), we could then

deduce the MA parameters by using a method such as the

spectral factorization.
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