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ABSTRACT

Outlier detection schemes have been used to identify the un-
wanted noise and this helps us to obtain underlying valuable
signals and predicting the next state of the systems/signals.
However, there are few researches on sequential outlier de-
tection in time series although a lot of outlier detection algo-
rithms are developed in off-line systems. In this paper, we fo-
cus on the sequential (on-line) outlier detection schemes, that
are based on the ’delete-replace’ approach. We also demon-
strate that three different types of residuals can be used to
design the outlier detection scheme to achieve accurate se-
quential estimation: marginal residual, conditional residual,
and contribution.

Index Terms— Outlier detection, Marginal residual,
Conditional residual, Contribution

1. INTRODUCTION

In research fields related to defense science and technology,
one of the interesting topics is methods for obtaining accu-
rate underlying valuable signals and predicting the next state
of the systems/signals using signal processing techniques that
are effective in unwanted environments. If the linear Gaus-
sian assumption is valid for the signal, the Kalman filter is
often used for the prediction of the systems/signals. How-
ever, the signals can be corrupted by malicious jammers or
an unwanted external influence. In this case, it is better to
remove the corrupted observations than to consider them un-
der Gaussian uncertainty, since handling noise is rather dif-
ficult, and Gaussian assumption may not be realistic. From
this point of view, the corrupted signals can be regarded as
outliers, which are commonly called novelty, anomaly, or ab-
normal signals, depending on the research field. Therefore,
we need to combine outlier detection algorithms and sequen-
tial prediction techniques to handle such unwanted outliers.

Anomaly detection is one of the key problems in signal
processing, statistics, and machine learning [1, 2, 3, 4, 5, 6, 7].
It is often variously called: outlier detection in the machine
learning field, anomaly detection in the signal processing and
measurement diagnostics in the field of statistics. In general,
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anomaly detection is one of the most difficult issues since a
new pattern that has not been found or trained has to be de-
tected. In the literature, there are several types of outliers [1]:
the innovation outlier (IO), the additive outlier (AO), a level
change/level shift outlier (LC/LSO), transient change (TC)
and variance change (VC) outliers. In this paper, we focus
on the subsequently multiple additive outlier (AO), innova-
tion outlier (IO), and level shift outlier (LSO). Other types of
outliers will be considered in future work.

2. TECHNICAL BACKGROUND

2.1. Several residuals in linear mixed model

Anomaly detection in statistics is studied mostly in the gen-
eralized linear (mixed) model and generalized least squares
(GLS) with a vector of observations Y: Y = BX+ ϵ, where
ϵ ∼MVN(·;0,V) and X is an unknown parameter to be fit-
ted and estimated. Specialization of V allows us to address a
large range of situations. When ordinary least squares (OLS)
suffices, V = σ2I provides the greatest specialization. In this
model there are, in general, two different types of residual
with two different aspects of the deviation of the data from
the fitted model [8, 9]. One of the types of residual is the
marginal/classical residual, which is the difference between
observation and the fitted value in ’estimation’. The other
type of residual is the conditional residual, which is the dif-
ference between observation and the predicted value in ’pre-
diction’. In the linear model, it is known that

X̂ = (BTV−1B)−1BTV−1Y

and that
var(X̂) = (BTV−1B)−1.

Hence, the marginal/classical residual ϵ̂ = Y − BX̂ can be
represented by the form of Y as ϵ̂ = VQY where Q =
V−1 −V−1BX̂Y−1.

Now, let us consider the conditional residual which is
based on the prediction model. Suppose that Y can be par-
titioned into two subsets Ya, and Yb, where Ya ∪Yb = Y
and Ya ∩Yb = {}. We can estimate the conditional residual
ϵ̃(a) [8] by ϵ̃(a) = Ya − Ỹa(Yb), which is the difference
between Ya and Ỹa(Yb).

Figure 1 shows two different types of residual for a par-
ticular data point, marginal and conditional. The red solid
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(a) Marginal residual ϵ̂i (b) Conditional residual ϵ̃(i)

Fig. 1. Two types of residual

lines represent the regression of the fitted model, and there-
fore the marginal data points Ŷi and the conditional data
point Ỹ(i) lie on the lines. That is, while the marginal residual
is obtained from the regression with full data, the conditional
residual is obtained from the regression with deleted subsets.
The residuals via different aspects of the regression may have
their own interesting characteristics which have their practi-
cal advantages and disadvantages. For instance, if there is a
singleton outlier at a large distance, as an outlier as shown
in figure 1, we can easily identify it by using the conditional
rather than the marginal residual. However, the conditional
residual does not always outperform the marginal residual,
since the computation can suffer from over-fitting because of
the small number of subsets used for the conditional residuals.
Therefore, we need to consider both conditional and marginal
residuals. Haslett et al. [10, 11] showed the relations between
marginal and conditional residuals in order to consider both
residuals. According to the leave-A-out conditional residual
ϵ̃(J), we have

D−1
J ϵ̃(J) = (V−1ϵ̂)J (1)

where DJ = var( ˜ϵ(J)) = (QJJ )
−1. If J = {i}, d−1

i ϵ̃(i) =

(V−1ϵ̂)i where di = var(ϵ̃(i)) = q−1
ii [11]. From equation

(1), the special lack of statistics may be written as CJ =∑
i CJi , where CJi = ϵ̃T(Ji)

D−1
Ji

ϵ̂Ji . This is named a con-
tribution. Haslett and Hayes [11] also derived the expec-
tation and variance of the contribution CJ by using an ap-
proximated distribution of the contribution. The contribution
CJ = ϵ̂TJD

−1
J ϵ̃(J) is related to the distribution of the differ-

ence of two independent χ2
kJ

random variables for a subset of
size kJ and can be modeled by

CJ = [(γJ + ϕJ )/2kJ ]V1 − [(γJ − ϕJ )/2kJ ]V2

where V1 and V2 are independent χ2
kJ

. Given this approxi-
mation of the distribution, the expectation and variance are
written as

E[CJ ] =
∑
i∈J

E[Ci] =
∑
i

ϕi = ϕJ and

var(CJ ) =
1

k
(γ2

J + ϕ2
J),

where ϕi is the i-th diagonal element of V̂Q. In addition,
γJ = k−1

J tr{(G1/2D−1G1/2)1/2}, where G = var(êJ).

2.2. Simple outlier detection

In general, given the mean and variance of the random vari-
ables, we can calculate in what way a particular data is out-
lying. Assume that we have a univariate/multivariate random
variable z with a mean µ and a variable Σ from a certain tar-
get distribution. In this case, we use the Mahalanobis dis-
tance to transform the multivariate to a nonnegative univari-
ate by α(z) =

√
(z − µ)tΣ−1(z − µ) ≥ 0, as shown in [12].

With this Mahalanobis distance, we have a truncated normal
distribution p(α(z)|µ,Σ) = 2√

2π
exp

{
− 1

2α(z)
2
}

and its cu-

mulative distribution is p(α(z) ≤ f |µ,Σ) = 1√
2
erf

(
α(z)√

2

)
where erf(·) is an error function.

2.3. Bayesian State Space Model in Time series

In this study, the Bayesian sequential estimation framework
for the time series state space model for the sequential predic-
tion technique is considered for performing long term predic-
tion. The well-known state space model consists of several
parameter variables: k dimensional observations yt, the hid-
den states xt, and a set of the time-invariant control parameter
θ. In the Bayesian sequential estimation framework, we can
obtain the posterior distribution for the prediction by recur-
sively estimating the following equations: p(xt|y1:t−1, θ)
for the prediction step, and p(xt|y1:t, θ) for the filtering
step. In addition, the marginal likelihood is often useful for
achieving an efficient prediction of the future observation by
p(yt|y1:t−1, θ) =

∫
p(yt|xt, θ)p(xt|y1:t−1, θ)dθ.

In this paper, we consider primarily a simple but a well-
known linear Gaussian state space model: yt = Btxt +
ϵt and xt = Axt−1 + ρt where ϵt is an assumed Gaussian
noise with ϵt ∼ N (0k×1, σ

2Ik×k) and ρt is an uncertain
noise of the coefficients and ρt ∼ N (02k× 1, gR). Here we

have Bt = [Ik×k,0k×k],A =

[
Ik×k, ∆ tIk×k

0k×k, Ik×k

]
,R =

GGT , and G =
[
∆ t2

2 Ik×k,∆tIk×k

]T
. Given this model

and its model parameters θ = (σ, g), we have the following
steps for estimation in linear dynamics:

p(xt|y1:t, θ) = N (xt;µt|t,Σt|t)

for filtering,

p(xt|y1:t−1, θ) = N (xt;µt|t−1,Σt|t−1)

for prediction,

p(y∗
t |y1:t, θ) = N (y∗

t ;mt|t,Mt|t)

for marginal filtering, and

p(y∗
t |y1:t−1, θ) = N (y∗

t ;mt|t−1,Mt|t−1)
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for marginal prediction where mt|t = Btµt|t and Mt|t =
BT

t Σt|tBt + σ2Id× d and mt|t−1 = Btµt|t−1 and Mt|t−1 =
BT

t Σt|t−1Bt + σ2Id× d.

3. PROPOSED APPROACH

3.1. Outlier detection in time series

Since the linear Gaussian state space model can be reinter-
preted as a generalized linear model, the prediction and filter-
ing steps of the state space model correspond to the prediction
and estimation of the linear mixed model. Therefore, we can
obtain the above three residuals for the outlier detection using
marginal prediction and marginal filtering distributions.

• Marginal residual: the marginal residual is the dif-
ference between observation and marginalized filtering,
ϵ̂t = yt −mt|t, where E[ϵ̂t] = 0 and var(ϵ̂t) = Mt|t.

• Conditional residual: the conditional residual is the
difference between observation and marginalized pre-
diction, ϵ̃(t) = yt − mt|t−1 where E[ϵ̃(t)] = 0 and
var(ϵ̃(t)) = Mt|t−1.

• Contribution: Ct = ϵ̃T(t)D
−1
t ϵ̂t where E[Ct] =∑

i∈{1,2,··· ,k} ϕi and var(Ct) =
1
k (γ

2
t + ϕ2

t )

where ϕi is the i-th diagonal element of V̂Q and γt =
k−1
t tr{(G1/2D−1G1/2)1/2}. In this model, we have a

slightly different Q, since we have a hierarchical model
in the state space model, while the linear mixed model has a
single layer. Recall ϵ̂t = yt −mt|t = yt −Btµt|t = VQyt.
Therefore, we have

Q = V−1(yt −Btµt|t)yt. (2)

Finally, we have the detailed algorithm 1 for residual-based
outlier detection for the state space model.

4. EXPERIMENTAL RESULTS

Figure 2(a) shows a synthetic data set with additive outliers
(AO) with a fixed θ = (σ, g) = (10−1, 102). We generated
1000 random trajectories (T = 500) using linear Gaussian
space model. Here, the AOs were added with a variance τ
varying from 0.1 to 10. Figure 3(a) and (b) show the results
obtained from the filtering operation for full trajectories and
the region of interest (ROI), where the data points are the
outliers beyond the trajectory. Figure 3(c) and (d) show the
results of the prediction operation for the full trajectory and
ROI. Each result represents the area under curve of the root
mean square error (RMSE) of the estimated trajectories when
outlier detection techniques were and were not used. Black
bars represent the performance of filtering algorithms with-
out outlier detection. Red, green, and blue bars represent

Algorithm 1 outputs = ProbNotOutlier(inputs)

Input: yt,mt|t,Mt|t,mt|t−1,Mt|t−1, σ
2, k

Output: st (the probability that the t-th measurement is
not an outlier)
V̂ = σ2I
ϵ̂t = yt −mt|t and ϵ̃(t) = yt −mt|t−1.
G = Mt|t and D = Mt|t−1.
Q = V̂−1(yt −mt|t)yt

Ct = ϵ̃T(t)D
−1
t ϵ̂t.

γt =
1
k tr{(G

1/2D−1G1/2)1/2}
ϕt =

∑
i∈t ϕi ← sum of diagonal elements of V̂Q.

m∗ = E[Ct] = ϕt and M∗ = 1
k (γ

2
t + ϕ2

t )
if Marginal residual is used then

α(ϵ̂t) =
√

ϵ̂Tt M
−1
t|t ϵ̂t

else if Conditional residual is used then
α(ϵ̃(t)) =

√
ϵ̃T(t)M

−1
t|t−1ϵ̃(t)

else if Contribution i used then
α(Ct) =

√
(Ct −m∗)TM∗−1(Ct −m∗)

end if
st = 1− 1√

2
erf

(
α(z)√

2

)
for z ∈ {ϵ̂t, ϵ̃(t), Ct}

(a) Additive outlier (AO)

(b) Innovative/level shift outlier (IO/LSO)

Fig. 2. Synthetic datasets with outliers

the performance of filtering algorithms with outlier detec-
tion based on marginal residual, conditional residual, and
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(a) Filtering (full area) (b) Filtering (ROI)

(c) Prediction (full area) (d) Prediction (ROI)

Fig. 3. The x-axis represents the number of subsequent outliers and the y-axis represents the area under curves of the RMSE
for AO: no outlier detection (black), marginal residual-based outlier detection (red), conditional residual-based outlier detection
(green) and contribution-based outlier detection (blue)

contribution, respectively. In addition, the x-axis of figure 3
represents the number of subsequent outliers. As can be seen
in the figure, the prediction performance of each algorithm
is displayed as ’black (no outlier detection)<red (marginal
residual)<blue(contribution)<green(conditional residual)’.
That these results would be obtained is obvious, since re-
moving such outliers can lead to a more accurate estimate.
However, the results are rather different from those produced
in the case of innovation outlier and level shift outliers. As
shown in figure 4, the contribution-based approach is effec-

tive for the prediction operation for both AOs and IO/LSOs
while marginal and conditional residual-based approaches are
effective only for either AOs or IO/LSOs.

5. CONCLUSION

We proposed a simple Bayesian sequential estimation scheme
in which outlier detection techniques based on three different
residuals: marginal residual, conditional residual and contri-
bution are applied. We demonstrated that the marginal resid-
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(a) Filtering (b) Prediction

Fig. 4. The x-axis represents the standard deviation of the outliers and the y-axis shows the log of the RMSE with innovation
and level shift outliers for full trajectory (IO/LSO)

uals are highly useful for prediction when IOs and LSOs are
present, but do not provide an accurate estimation for trajec-
tories with AOs, which can be handled effectively by using
conditional residuals. From this point of view, the contribu-
tion, which hybridizes both marginal and conditional resid-
uals, is recommended for detecting abnormal signals (out-
liers/anomalies) in the case of several types of outliers: IO,
LSO, and AO.
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