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ABSTRACT

For an antenna array input mixture of m point source sig-

nals in K-distributed noise, we compare DOA estimation de-

livered by Maximum Likelihood and the recently introduced

Robust G-MUSIC (RG-MUSIC) technique. We demonstrate

that similar to the Gaussian case, MLE is still superior to

RG-MUSIC, especially within the so-called threshold region.

This makes it possible to use the Expected Likelihood (EL)

methodology to detect the presence of RG-MUSIC perfor-

mance breakdown and “cure” those cases via an approach

previously developed for the complex Gaussian circumstance.

Index Terms— Maximum Likelihood Estimation (MLE),

G-MUSIC, Robust G-MUSIC, Expected Likelihood (EL)

1. INTRODUCTION

Under conditions of limited sample volume T and/or low

signal-to-noise ratio (SNR), practical DOA algorithms begin

to produce occasional wildly erroneous DOA estimates (out-

liers) while the computationally intensive (global) ML esti-

mates continue to produce reasonable estimates (i.e. ones

close to the Cramèr-Rao Bound (CRB)). For subspace-based

DOA estimators, this threshold effect is associated with lack

of full statistical separation between the noise and signal sub-

space of the sample covariance matrix estimate [1] (i.e. the

noise subspace eigenvalues and the signal subspace ones do

not belong to different “clusters”). Under Random Matrix

Theory (RMT), distributions of these clusters of eigenvalues

are described using alternative Kolmogorov G-asymptotic as-

sumptions where both the array dimensionM and sample vol-

ume T asymptotically grow without bound, while the ratio

M/T tends to a finite constant, rather than classic asymptotic

analysis (i.e. T → ∞).

In [2], RMT is used to generate an alternative eigenvec-

tor weighting approach for subspace DOA estimation referred

to as G-MUSIC, with threshold region performance supe-

rior to the classic MUSIC algorithm. Recently, this same

technique was applied to the non-Gaussian case [3] using

Maronna or Tyler fixed-point covariance matrix estimation [4]

and delivered consistent (in the Kolmogorov sense) DOA es-

timates. Moreover, this consistency was proven under very

mild i.i.d. requirements in the presence of differently dis-

tributed source signals and additive noise. This technique,

termed RG-MUSIC, is explored in [5].

For the G-MUSIC technique, it has been shown that us-

ing the traditionally defined likelihood function, MLE per-

formance in the threshold region is still superior [6] (albeit

computationally impractical in many circumstances). To im-

prove MUSIC/G-MUSIC performance, the Expected Likeli-

hood (EL) technique has been applied to detect cases where

the results contain erroneous DOA estimates. The EL tech-

nique is discussed in detail in [7], but briefly, the method ex-

ploits the fact that even though the likelihood ratio of the (un-

known) true source parameters is unknown, the distribution

of the likelihood ratio for certain source and noise models

does not depend on those parameters and therefore is known.

Likelihood ratios of MUSIC/G-MUSIC estimates which lie

outside this LR p.d.f. support are viewed as erroneous and

discarded. Furthermore, a search for an estimate with a likeli-

hood ratio within this p.d.f. support can be conducted and that

estimate used, even if the LR is not maximal. Thus the com-

putationally efficient MUSIC and G-MUSIC technique can be

used in a majority of cases, and where that technique fails, the

EL technique can produce a superior estimate, albeit at higher

computational cost, but lower than generation of the MLE.

In this study, we investigate whether a similar circum-

stance with RG-MUSIC performance in the threshold region

exists and whether EL methodology can be used in essen-

tially non-Gaussian scenarios with the fixed-point covariance

matrix estimation approach.

2. STATISTICAL MODELS FOR MLE AND

RG-MUSIC DOA ESTIMATION

2.1. Conditional Model

Let us consider an M element antenna array with M -variate

snapshot xt = A(Θ)St + ηt, t = 1, . . . , T , where A(Θ)
is the set of antenna manifolds specified by DOAs associated

with the ensemble of m sources. Similarly, St ∈ Cm×1 is the

m-element vector of source signals and ηt ∼ CM×1 is the se-
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quence of i.i.d. random vectors. Depending on the statistical

description of vectors St and ηt (with t = 1, . . . , T ), we get

various models. For example, the classical “unconditional” or

stochastic Gaussian model treats both vectors as i.i.d. Gaus-

sian distributed vectors.

In many practical applications, the Gaussian assumption

on St ∈ Cm×1 is not accurate and in those cases, the so-called

“conditional” or “deterministic” model may be used, where

the vector St is treated as an a priori unknown deterministic

vector embedded in Gaussian noise described by covariance

Rn, which results in the following model:

xt ∼ CN (A(Θ)St, Rn), t = 1, . . . , T. (1)

While RG-MUSIC is applicable to scenarios with ar-

bitrary and differently distributed St and ηt, in our study

we wish to consider tractable statistical models with non-

Gaussian data that allow for likelihood function calculations.

For this reason, we consider use of a complex elliptically sym-

metric (CES) contoured distribution with the following statis-

tical representation [3]:

xt =
d µt +

√

QtCut. (2)

Here =d means “has the same distribution as”, while µt rep-

resents the deterministic mean value. The non-negative real

random value
√
Qt (called the modular variate), is inde-

pendent of the complex random vector ut. That complex

vector ut possesses a uniform distribution on the complex

sphere CSM = {z ∈ C, ||z|| = 1}, which we denote as

ut → U(CSM ). The full-rank matrix C ∈ CM×M is such

that CCH = Σ0, where Σ0 is the so-called scatter matrix.

In this paper we limit ourselves to the absolutely continuous

case where Σ0 is positive definite. In such a case, the p.d.f.

of xt can be defined and we wish to consider a specific CES

distributed p.d.f. p(Qt) for the so-called K-distribution [3]:

p(Qt) =
2ν

M+ν

2

Γ(ν)Γ(M)
Q

[M+ν

2
−1]

t Kν−M (2
√

νQt) (3)

where Γ(·) is the Gamma function while Kl(·) denotes the

modified Bessel function of the second kind of order l. This

distribution is based on a “density generator” g(·) (which for

the Gaussian case is just g(t) = exp(−t)) of the form [3]:

g(Qt) = Q
ν−M

2

t Kν−M (2
√

νQt). (4)

In the limit when ν → ∞, the K-distribution reduces to the

CN distribution, while 0 < ν < 1 corresponds to “heavy-

tailed” distributions. Therefore, analysis of DOA estimation

performance for various ν covers a broad class of distribu-

tions.

Similarly to the Gaussian case, one can also consider a

variation on the “conditional” model, when the signal is given

by µt = A(Θ)St and Σ0 = σnIM , where the noise power

σn can be a priori known or unknown and the deterministic

unknown source waveform St is drawn from a Gaussian dis-

tribution. This conditional model considers Gaussian source

signals in essentially non-Gaussian additive white noise.

2.2. Comparison with Unconditional Model

The unconditional model can be introduced with

µt = 0, Σ0 = A(Θ0)BAH(Θ0) + Rn (5)

where B is the m × m source powers matrix and Rn is the

noise covariance matrix. According to (2), in this case CES

representation of the input data as xt ∼ √
QtCut, i.e. a

compound Gaussian representation [3], with ut a Gaussian

random vector, and the modular variate
√
Qt random values

represented by
√
τ drawn from a Gamma distribution:

xt ∼
√
τCut ; ut ∼ CN (0,Σ0) (6)

τ ∼ Gamma[ν, ν−1] ηt ∈ CN (0, Rn) (7)

These K-distributed scenarios demonstrates significant

difference between conditional (1) and unconditional (5)

models, especially for low ν (i.e. ≤ 1). Within the conditional

model, use of such “heavy-tailed” noise distributions with

fixed second moments means that while in some instances (in

t), source signals are contaminated by very strong impulsive

noise events, the majority of noise samples will have very low

power (to keep the average power fixed). Therefore, if the

estimation processing can somehow ignore the strong noise

events and concentrate on the low noise samples, one would

expect that DOA estimation accuracy could be significantly

superior to estimation on models with Gaussian noise of the

same average power.

In contrast, use of the unconditional representation (6)

means that both the Gaussian source and noise vectors are

equally scaled by the same (random) scalar
√
τ . Since the

SNR is not changed by this scaling, it is clear that even a

straightforward normalization of zt = xt

||xt||
makes zt in-

distinguishable from a similarly normalized Gaussian vector

xt ∼ CN (0,Σ), which means that the optimal (MLE) esti-

mation accuracy should only weakly depend on the
√
Qt dis-

tribution and cannot be worse than for the data zt, distributed

as [3]

p(zt) =
(M − 1)!

πM

1

|Σ0|[zHt Σ−1
0 zt]M

. (8)

While validation of the anticipated unconditional MLE

properties is required, we focus our attention here on the more

challenging conditional MLE case.

2.3. DOA Estimation Accuracy - Conditional Model

Based on the above examination, we wish to compare the es-

timation accuracy delivered by RG-MUSIC with the MLE

global search, as well as examining the potential for appli-

cation of EL. We start with specification of the analytic ex-

pressions associated with the fixed-point covariance matrix
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estimation used for RG-MUSIC, which is defined by iteration

of:

Σ̂ML = lim
k→∞

Σ̂k; Σ̂k =
1

T

T
∑

t=1

ϕ(xH
t Σ̂−1

k−1xt)xtx
H
t (9)

where ϕ(·) = − g′(·)
g(·) . Using the density generator g(·) de-

fined for K-distributed noise in (4), we get

ϕ(y) =

√

ν

y

KM+1−ν(2
√
νy)

KM−ν(2
√
νy)

(10)

which leads to

Σ̂k =

√
ν

T

T
∑

t=1

1
√

x
H
t Σ−1

k−1xt

KM+1−ν(2
√

x
H
t Σ−1

k−1xt)

KM−ν(2
√

x
H
t Σ−1

k−1xt)
xtx

H
t .

(11)

For M − ν ≫ 1 (a ”large array” approximation), we may

approximate this scatter matrix estimate by using the asymp-

totic formula for the modified Bessel function Kl(x), getting

the Tyler fixed-point covariance matrix estimate

Σ̂k =
M

T

T
∑

t=1

xtx
H
t

x
H
t Σ−1

k−1xt

. (12)

Now, given Σ̂ML via accurate (9) or Tyler recursions

(12), we may use the eigendecomposition with λ̂j eigen-

values and Ûj eigenvectors directly for MUSIC pseudo-

spectrum calculations (R-MUSIC). Similarly [5], one can use

the G-asymptotic transformations to (λ̂j , Ûj) to provide for a

given number of point sources m the G-estimate of the MU-

SIC pseudo-spectrum (RG-MUSIC). For the details on these

transformations, see [8].

Let us now consider the MLE for the conditional model

of interest, assuming the additive noise power is known and

scaled to unity (σn = 1). Again, using the M − ν ≫ 1 large

arrray approximation, we will use the asymptotic formula for

the modified Bessel function Kl(x). Following the method-

ology in [9] and deriving the conditional ML criterion that is

searching for the minimum trace of the “projected” covari-

ance matrix, we arrive at

lnLF (Θ|XT ) ≈
1

T

T
∑

t=1

lnxH
t P⊥(Θ)xt (13)

P⊥(Θ) = IM −A(Θ)[AH(Θ)A(Θ)]−1AH(Θ). (14)

This expression can now be used for a direct (albeit com-

putationally inefficient) global search over (θ1, . . . , θm) and

evaluated to see if the LR distribution is independent of spe-

cific scenario parameters (other than those known a priori

such as M , T , and σn) and therefore suitable for use in the

EL methodology [7]. Recall that it is a basic property of

the MLE technique (both for conditional and unconditional

cases) that the likelihood evaluated at the MLE is greater than

the likelihood of the (unknown) true parameters (otherwise

MLE would be error-free):

max
Θ

lnLF (Θ|XT ) ≥ lnLF (Θ0|XT ) (15)

where Θ0 = [θ1, . . . , θm] are the actual (true) DOAs. Yet

according to the compound-Gaussian representation of the K-

distributed random vector [3]

√

QtCut ∼
√
τut, ut ∼ CN (0,Σ0), τ ∼ Gamma[ν, ν−1],

(16)

we get

xH
t P⊥(Θ0)xt ∼ τuH

t P⊥(Θ0)ut ∼ τ(uM−m
t )H(uM−m

t )
(17)

where uM−m
t ∼ CN (0, IM−m) and uM−m

t ∈ CM−m.

For any given (T,m), the p.d.f. for lnLF (Θ0|XT ) may

be accurately evaluated using Monte-Carlo simulations.

For the unconditional model, we may use standard EL

methodology [7] whereby

LR(Θ|XT ) = |Σ̂MLΣ
−1(Θ)|T

T
∏

t=1

g(xH
t Σ−1(Θ)xt)

g(xH
t Σ̂−1

ML(Θ)xt)
≤ 1

(18)

with a p.d.f. for LR(Θ0|XT ) not dependent on the individual

true DOAs Θ0. Naturally, we may again adopt the asymptotic

approximation for the modified Bessel function and get

LR
1
T (Θ|XT ) = |Σ̂MLΣ

−1(Θ)|T
[

T
∏

t=1

x
H
t Σ−1(Θ)xt

x
H
t Σ̂−1

ML(Θ)xt

]

ν−M

T

.

(19)

As expected, LR(Θ0|XT ) does not for practical purposes

depend on the distribution of the Qt.

3. SIMULATION RESULTS

To keep the global search implementation manageable, we

simulate a two-source scenario (m = 2) in a M = 20 ele-

ment uniform linear antenna array with half-wavelength ele-

ment spacing and T = 40 snapshots. To allow for comparison

with previous investigations [10], we use DOAs of θ1 = 16o

and θ2 = 18o.

Let us start from the unconditional scenario where (5)-(6)

xt ∼
√
τCut; CCH = A(Θ0)BAH(Θ0) + σ2

nIM , (20)

where B = diag[p1, p2]. For powers p̂1, p̂2 estimation given

Θ = [θ1, θ2], we apply the usual matrix fitting approach us-

ing the MLE (Tyler) fixed-point covariance matrix estimate

instead of the direct sample covariance matrix used in the

Gaussian case.

First, at Fig. 1 we introduce simulation results on MU-

SIC, G-MUSIC, R-MUSIC, and RG-MUSIC estimation for
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Fig. 1. Unconditional K-distributed signal/noise case, shown with Gaussian CRB

ν = 0.5 and ν = 1.0. The results shown for R-MUSIC and

RG-MUSIC at either value of ν match closely with the MU-

SIC and G-MUSIC results shown in [10] (Fig. 1 in that ref-

erence) with the same signal parameters but computed in that

case for a Gaussian noise and signal model. This quite ex-

pected result allows us to retain unmodified for the uncondi-

tional case all the conclusions from that earlier study regard-

ing correspondence between MUSIC, G-MUSIC and MLE

threshold conditions, but now extended to the non-Gaussian

unconditional case and R-MUSIC/RG-MUSIC. Furthermore,

the results from [10] which showed that MUSIC and G-

MUSIC outlier generation could be detected and “cured” us-

ing EL over a wide range of SNR values can also be ex-

tended to this non-Gaussian unconditional case for R-MUSIC

and RG-MUSIC. The significant gains of R-MUSIC and RG-

MUSIC (or conversely the significant degradation of classic

MUSIC and G-MUSIC) in the presence of non-Gaussian sig-

nal and noise can be attributed to the large dynamic range

between the scaled by
√
τ training snapshots leading to an

effective reduction of the actual sample support within the di-

rect sample covariance matrix, while the fixed-point covari-

ance estimate accommodates the scaling, allowing the effec-

tive sample support to be maintained.

Yet for m < M point sources in additive noise, this un-

conditional scenario which results in equal scaling of both the

source signal and the noise by the same random number
√
Qt

does not in practice model common array or environment be-

havior. Therefore the expected results leading to performance

which is indistinguishable from the Gaussian results after re-

placement of the direct sample covariance matrix by its fixed

point version is less useful than consideration of the condi-

tional case below. In that conditional case, we simulate two

Gaussian distributed signal sources of equal power embedded

in K-distributed additive noise (with ν = 0.5, 1.0).

For comparison, we once again refer the reader to [10],

which analyzed both conditional and unconditional models in

the Gaussian case for MUSIC and G-MUSIC. In that study,

there was not much observable difference between uncondi-

tional and conditional model performance. But as shown be-

low for the K-distributed case, the situation is much different

(see Fig. 2(a) (ν = .5) and Fig. 2(b) (ν = 1.0)).

One can not only observe the large improvement in

DOA performance delivered by R-MUSIC, RG-MUSIC, and

MLE using the fixed-point covariance estimate relative to

MUSIC/G-MUSIC, but the significant (and expected) im-

provement of this accuracy relative to the Gaussian case with

the same SNR (averaged across all T array snapshots). The

reason can be seen by comparing the minimized likelihood

function (13), which is a sum of logarithms (i.e. a prod-

uct) of the individual residuals (some with high impulsive

noise, many with low noise), i.e. min
∑T

t=1 lnx
H
t P⊥(Θ)xt

to the Gaussian equivalent [10], which is a sum of those same

residuals i.e. min
∑T

t=1 x
H
t P⊥(Θ)xt. The fixed second mo-

ment for the “heavy-tailed” distribution explored in this paper

means that extremely powerful impulse-like realizations of√
Qt are augmented by a large number of snapshots with very

low noise amplitudes. The logarithm in (13) strongly empha-

sizes the samples with “small” Qt, concentrating on the sam-

ples xt with the maximal instantaneous signal-to-noise ratio,

in contrast to the Gaussian formulation.

As one would expect, for ν = 0.5 with the heavier tails,

this improvement is much more significant than for ν = 1.0.

In terms of MLE versus RG-MUSIC performance improve-

ment, one can once again observe significant differences in

the threshold SNR between RG-MUSIC and MLE, making

the estimator performance a candidate for EL improvement.

To use EL, it is necessary for the LF distribution to be essen-

tially independent of scenario parameters such as number of

sources and SNR of those sources. In Fig. 3, we show the

LF distribution for an SNR which happens to have about 15%

RG-MUSIC outliers, with separate curves for the trials with

and without outliers. The LF offset between outlier and non-

outlier cases can be used to detect some (but in this case, not

all) the outliers. The figure also shows the distribution for an

23rd European Signal Processing Conference (EUSIPCO)

1809



−10 −5 0 5 10 15 20 25 30

10
−2

10
0

10
2

10
4

Post Beamforming SNR (dB)

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r 

(d
e

g
2
)

ULA (M = 20, T = 40), Conditional K−dist, ν = 0.5

MUSIC

G−MUSIC

RMUSIC

RG−MUSIC

DMLE

(a) ν = 0.5

−10 −5 0 5 10 15 20 25 30

10
−2

10
0

10
2

10
4

Post Beamforming SNR (dB)

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r 

(d
e

g
2
)

ULA (M = 20, T = 40), Conditional K−Dist, ν = 1.0

MUSIC

G−MUSIC

RMUSIC

RG−MUSIC

DMLE

(b) ν = 1.0

Fig. 2. Conditional K-distributed noise case.

LF determined clairvoyantly, and at a different SNR. The LF

distribution is stable across scenario parameters such as SNR

for the non-outlier and true DOA cases, allowing us to pre-

compute the LF threshold to use for outlier detection, and thus

use the EL methodology. Therefore, in the more challenging

(and physically relevant) conditional case, some outliers from

R-MUSIC and RG-MUSIC can be reliably detected by EL,

supporting further DOA estimate improvement.
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Fig. 3. Distribution of conditional LF for trials with different SNRs

and different DOA estimates (outlier, non-outlier, “true” DOAs)

4. SUMMARY AND CONCLUSIONS

Conducted performance comparison of the recently intro-

duced RMT-based RG-MUSIC DOA estimation technique

against the appropriate ML estimation for conditional and

unconditional models and K-distributed noise demonstrated

MLE superiority over RG-MUSIC in the threshold region,

as previously shown in the Gaussian case. We also showed

that for trials in the SNR range where RG-MUSIC some-

times produced large outliers, but MLE provided accurate es-

timates, we could reliably identify those trials using the Ex-

pected Likelihood (EL) method.

We also demonstrated for a (quite artificial for this ap-

plication) unconditional ML problem formulation, the poten-

tial DOA estimation accuracy approaches that of the Gaus-

sian case, described by the Gaussian unconditional CRB.

For the conditional ML problem with Gaussian signal and

non-Gaussian K-distributed noise, the RG-MUSIC and MLE

DOA estimation accuracy improves with progressively heav-

ier tails for the noise distribution.

REFERENCES

[1] X. Mestre, “Improved estimation of eigenvalues and eigenvectors of

covariance matrices using their sample estimates,” IEEE Trans. Infor-

mation Theory, vol. 54, no. 11, pp. 5113–5129, Nov 2008.

[2] ——, “An improved subspace-based algorithm in the small sample size

regime,” in Proc. ICASSP. Toulouse, France: IEEE, 2006.

[3] E. Ollila, D. Tyler, V. Koivunen, and H. Poor, “Complex elliptically

symmetric distributions: Survey, new results and applications,” IEEE

Trans. Signal Processing, vol. 60, no. 11, pp. 5597–5625, Nov 2012.

[4] R. Couillet, F. Pascal, and J. Silverstein, “Robust estimates of covari-

ance matrices in the large dimensional regime,” IEEE Trans. Informa-

tion Theory, vol. 60, no. 11, pp. 7269–7278, Nov 2014.

[5] R. Couillet and A. Kammoun, “Robust g-music,” in Signal Process-

ing Conference (EUSIPCO), 2014 Proceedings of the 22nd European,

Sept 2014, pp. 2155–2159.

[6] Y. I. Abramovich and B. A. Johnson, “Detection-estimation of very

close emitters: Performance breakdown, ambiguity, and general statis-

tical analysis of maximum-likelihood estimation,” IEEE Trans. Signal

Processing, vol. 58, no. 7, pp. 3647–3660, Jul 2010.

[7] B. A. Johnson and Y. I. Abramovich, “DOA estimator performance as-

sessment in the pre-asymptotic domain using the likelihood principle,”

Elsevier Journal of Signal Processing, vol. 90, no. 5, pp. 1392–1401,

May 2010.

[8] X. Mestre and M. A. Lagunas, “Modified subspace algorithms for DoA

estimation with large arrays,” IEEE Trans. Signal Processing, vol. 56,

no. 2, pp. 598–614, Feb 2008.

[9] F. Pascal and A. Renaux, “Statistical analysis of the covariance matrix

MLE in K-distributed clutter,” Signal Processing, vol. 90, no. 4, pp.

1165–1175, Apr 2010.

[10] Y. I. Abramovich and B. A. Johnson, “Expected Likelihood support

for deterministic maximum likelihood DOA estimation,” Signal Pro-

cessing, vol. 93, no. 12, pp. 3410–3422, 2013.

23rd European Signal Processing Conference (EUSIPCO)

1810


