
SPECTRAL ESTIMATION IN HIGHLY TRANSIENT DATA

Saba Emrani and Hamid Krim

North Carolina State University
Electrical and Computer Engineering Department

890 Oval Drive, Raleigh, NC, 27606

ABSTRACT

We propose a new framework for estimating different fre-
quencies in piece-wise periodic signals with time varying am-
plitude and phase. Through a 3-dimensional delay embedding
of the introduced model, we construct a union of intersecting
planes where each plane corresponds to one frequency. The
equations of each of these planes only depend on the asso-
ciated frequency, and are used to calculate the tone in each
segment. A sparse subspace clustering technique is utilized
to find the segmentation of the data, and the points in each
cluster are used to compute the normal vectors. In the pres-
ence of white Gaussian noise, principal component analysis
is used to robustly perform this computation. Experimental
results demonstrate the effectiveness of the proposed frame-
work.

Index Terms— Spectral estimation, transient data, delay
embedding, sparse subspace clustering

1. INTRODUCTION

Spectral estimation using sampled data of sinusoidal signals is
a well studied problem in signal processing with applications
in many areas such as biomedical signal processing, speech
processing and communications. A variety of approaches to
this problem has been developed, and many are explicitly
based on an additive model of sinusoids with constant am-
plitude and phase for each tone embedded in additive white
noise [1–3]. Although this model has been an effective way
to represent a variety of signals, many waveforms with al-
most periodic structures fail this formulation because of the
inherent non-stationarity. In this study, we use a piecewise
sinusoidal function where each tone has time varying ampli-
tude and phase. This representation is an effective tool for ex-
pressing the periodic structures in biomedical signals such as
wheezes and cell cycle regulated genes [4–6], speech process-
ing [7], image compression artifacts [8] and patterned texture
analysis [9].

Accurate and robust estimation of the frequencies in
the introduced model is remarkably beneficial in practice.
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Enumerating and estimating the frequencies in wheezes is a
premise to essential diagnostic knowledge and can be very
useful in visualization of information in health monitoring
devices. The number of tones present in a recorded wheeze
signal is an indicator of how many airway occlusions have
occurred in the respiratory tree. Wheezes with higher fre-
quencies, usually referred to as high pitched wheezes, are
associated with obstruction of the small airways while low
pitched wheezes with lower frequencies are related to dis-
eases of larger airways. In addition, the frequency of a
microarray time series profile from a periodically expressed
gene provides important information about cell cycle regu-
lation. Particularly, if this frequency is the same as the cell
cycle, we will be able to identify cell cycle regulated genes.
Thus, we propose a framework for frequency estimation in
the group of signals with almost harmonic patterns that can
be well represented by the introduced model.

The delay coordinate embedding method which embeds a
time series into a higher dimensional space, was first proposed
by Takens [10] with the goal of recovering the underlying dy-
namics of a system using its output. This technique has been
mostly used in the analysis of dynamical systems and chaotic
attractors [11–13]. Two dimensional delay embeddings of
time series were also employed in signal analysis in [4–6]
to detect almost harmonic patterns. Moreover three dimen-
sional delay embeddings have been used in human speech
recognition in [14]. In this study, we propose a three dimen-
sional delay embedding for frequency estimation and prove
that each frequency in the time domain will correspond to
a plane in embedding space. To that end, we exploited a
recently proposed algorithm based on sparse representation
methods, called Sparse Subspace Clustering (SSC) [15] to
cluster the whole set of points into 2 dimensional subspaces
(planes). The points on each subspace can be used to calcu-
late the equation of the plane which is completely determined
by the frequency. In the noise free case, only three points in
each subspace would be sufficient for this computation. How-
ever, in the presence of noise, principal component analysis
(PCA) is employed for estimating the plane normal vector .
The proposed algorithm is robust to missing data points, time
varying sampling rates and noise. Moreover, since only a few
sub-samples are sufficient for a normal vector computation,
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it performs well for highly downsampled signals. Real time
frequency estimation with very low computational cost can
hence be achieved using the proposed approach.

The remainder of the paper is organized as follows: the
signal model, the time delay embeddings and their relations to
underlying frequencies in a sparse subspace clustering frame-
work are discussed in Section 2. Experimental results are in-
cluded in Section 3. Finally Section 4 concludes the paper.

2. PROPOSED FRAMEWORK

2.1. Signal Model

The proposed signal model is a continuous piecewise sinu-
soidal function with different periods and phase with a time
varying envelope defined as

y(t) =
n∑
i=1

gi(t), (1)

where

gi(t) =

{
yi(t) ti−1 ≤ t < ti,

0 otherwise (2)

and y′is, i = 1, 2, ..., n are defined as,

yi(t) = A(t) sin (ωit+ φi) , (3)

where A(t) is a nonzero continuous amplitude function and
φi+1 = φi + ti (ωi − ωi+1) satisfies the continuity of y(t).

This representation has been used for periodicity detec-
tion in breathing sound signals with the goal of wheeze de-
tection, since the harmonic pattern of wheezes in the time do-
main are well represented by this formulation [4, 5]. It has
also been utilized to identify the cell cycle regulated genes
in [6], as it suitably fits the periodic patterns of cell cycles in
genetic expression datasets.

2.2. 3D Time Delay Embeddings

In a general representation of delay coordinate embedding,
for each time series with the sampling time Ts denoted by
y(t), t = {i.Ts}, i = 1, 2, ..., the following vector quantity of
m components is constructed:

Ym(t) = (y(t), y(t+ τ1), y(t+ τ2), ..., y(t+ τm−1)), (4)

where y(t) ∈ R, τ1, ..., τm are different time delays, and m
is the embedding dimension. The delay times and the embed-
ding dimension are essential parameters to determine. The
appropriate interval for choosing a delay time to best obtain
informative delay embedding of signal is tc1 < τ < tc2,
where tc1 and tc2 are the first and second critical points of
an autocorrelation-like function defined as

Ryy(t) =
∑
k

y(k + t)y(k). (5)

Equation (4) with m = 2 is used in [4] to detect almost
periodic patterns. The 2-dimensional time delay embedding
Y2(t) is a set of concentric ellipses with major axis angles of
rotation ±π/4 and varying radii due to different frequencies.
The varying side lengths of the circumscribed squares around
these ellipses are due to a time-varying amplitude [4].

In this study, we use m = 3 for estimating different fre-
quencies present in the signal. The following Theorem shows
that three dimensional time delay embedding of a sinusoidal
signal will form a plane whose equation only depends on the
frequency.

Theorem 1. Suppose that τ1, τ2 6= kπ
ω . The 3 dimensional

delay-coordinate embedding of s(t) = sin(ωt) obtained us-
ing (4) as S(t) = (sinωt, sinω(t+ τ1), sinω(t+ τ2)) lies
on a plane with the normal vector

N = (sinω(τ1 − τ2), sinωτ2,− sinωτ1) . (6)

Proof. We can write the following equations for the last two
terms of S(t) using trigonometric properties

sin(ωt+ ωτi) = sin(ωt) cos(ωτi) + sin(ωτi) cos(ωt)
(7)

where i = 1, 2. Equating the term cosωt in the equa-
tions for i = 1 and i = 2 yields cosec(ωτ1) sin(ωt +
ωτ1) − cot(ωτ1) sin(ωt) − cosec(ωτ2) sin(ωt + ωτ2) +
cot(ωτ2) sin(ωt) = 0. By rearranging the terms in the above
equation, we obtain the following

(cot(ωτ2)− cot(ωτ1)) sin(ωt) + cosec(ωτ1) sin(ωt+ ωτ1)
−cosec(ωτ2) sin(ωt+ ωτ2) = 0.

(8)
The equation above is a plane equation where sin(ωt),
sin(ωt + ωτ1) and sin(ωt + ωτ2) are the three coordinates.
Thus, by multiplying sides by sin(ωτ1) sin(ωτ2) we can
obtain the normal vector as expressed in Equation (6).

Time delay embedding of sin (ωt+ φ1) and sin (ω + φ2)
only differ by a reparametrization and are therefore eventu-
ally equal sets [4]. Accordingly, Theorem 1 is also valid when
a phase term is added. Moreover, since both sides of Equa-
tion (7) can be multiplied and divided by nonzero continuous
function A(t), the theorem is valid for yi(t) as expressed in
(3). Thus, we can conclude the following,

Suppose that the time delays τ1 and τ1 are selected be-
tween tc1 and tc2. The 3-dimensional delay embedding Y3(t)
of y(t) as described in Equations (1)-(3) forms a set of n
intersecting planes where the points lying on the ith plane
correspond to the frequency ωi in the time domain signal.

The extension of this statement to delay embeddings of
any dimension higher than 3 can clearly follow. In order to
estimate n frequencies in the signal expressed by Equations
(1)-(3), we need to find the clusters of data points which lie
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on each plane. Sparse Subspace clustering technique intro-
duced by [15] as described in the next subsection, is used for
accomplishing this.

After clustering, we can calculate the normal vector of
each plane using three randomly selected points from each
segment. In the presence of additive white Gaussian noise,
PCA is however employed for this computation. The frequen-
cies then can be obtained by comparing the calculated vector
with Equation (6).

2.3. Sparse Subsapce Clustering

Sparse subspace clustering (SSC) is an algorithm for clus-
tering a set of lower dimensional subspaces in a higher di-
mensional space using sparse representation methods. In this
study, we use SSC to cluster points lying on a collection of
two dimensional subspaces or planes. The problem is estab-
lishing the membership of each data point to each particular
subspace, as well as calculating the basis of the subspaces.

Consider {Sl}nl=1 as a collection of n linear subspaces
of dimensions {dl}nl=1 in a D-dimensional space. {yi}Ni=1

represents N data points lying in the union of n subspaces.
The matrix Y including all the points in the dataset, can be
written as

Y = [y1 ... yN ] = [Y 1 ... Y n]Γ, (9)

where Y l is a D × Nl matrix including Nl data points lying
on the subspace Sl, and Γ denotes a permutation matrix that is
not known a priori. This clustering technique is based on the
self-expressiveness characteristic of the data described as fol-
lows. Each point yi in a union of subspaces

⊕n
l=1 Sl can be

represented using a combination of other points in the dataset
as yi = Y ci, where ci = [ci1 ci2 ... ciN ]T . Note that cii 6= 0
to make sure a point is written as a linear combination of other
points excluding itself. Generally, the representation of yi in
this format in not unique. There is however a unique solution
called subspace-sparse representation where the nonzero ele-
ments of ci correspond to the points that belong to the same
subspace as the point yi. In the ideal case of sparse represen-
tation, the point yi in the subspace Sl can be written as a linear
combination of points lying on the same subspace. This so-
lution can be obtained by solving the following optimization
problem

min ‖ci‖1 s.t. yi = Y ci, cii = 0, (10)

which can be rewritten in matrix form as

min ‖C‖1 s.t. Y = Y C, diag(C) = 0, (11)

where C is a block diagonal matrix including the sparse rep-
resentations of yi’s, i.e. C = [c1 c2 ... cN ] and diag(C)
denotes diagonal elements of C.

In order to cluster the data after solving the optimization
problem, we need to construct a weighted graph with N data

Fig. 1: left: y(t) with constant amplitude and 3 different fre-
quencies in different colors. Right: delay embedding Y3(t)

(a) (b)

Fig. 2: (a) matrix of sparse coefficients, (b) clusters indices

points as its nodes. The symmetric similarity matrix of the
edges weights is denoted by W ∈ RN×N . In the ideal case,
there will be edges only between the nodes corresponding
to the points lying on the same subspace. Accordingly, the
sparse coefficients matrix W = |C|+ |C|T expressed below
is a suitable choice.

W =

W 1 ... 0
...

. . .
...

0 ... W n

Γ (12)

where W l represents the similarity matrix of the points lying
on subspace l. Finally, the spectral clustering [16] of the de-
scribed graph will yield segmentation of the data points into
lower dimensional subspaces. In other words, we normalize
and stack the n largest eigenvectors of the Laplacian matrix of
the graph in the columns of a matrix and apply the K-means
method [17].

3. EXPERIMENTAL RESULTS

Numerical simulations have been performed to evaluate the
performance of the proposed frequency estimation approach
for synthesized piecewise sinusoidal signals with different
frequencies, and time varying amplitude embedded in ad-
ditive white Gaussian noise. To asses the robustness of the
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Fig. 3: left: y(t) with time varying amplitude and 3 different
frequencies. Right: delay embedding

(a) (b)

Fig. 4: (a) matrix of sparse coefficients, (b) clusters indices

introduced technique to noise and downsampling, we inves-
tigate its accuracy for different signal to noise ratios (SNR)
and different downsampling factors. The Mean Square Error
(MSE) denoted by E{

∑n
i=1(ω̂i − ωi)2}, is employed as the

performance measure.
In the first test, we consider frequency estimation for a

signal represented by Equations (1) - (3) with sampling fre-
quency of 200, three different frequencies and constant am-
plitude. The sinusoidal parameters are fi ∈ {0.5, 2, 5} and
A(t) = 1. Figure 1 shows the described signal with dif-
ferent frequencies represented in different colors and their
corresponding three dimensional delay embedding. The sec-
ond zero of an autocorrelation-like function of the signal was
chosen as the delay for the delay embedding construction.
Clearly, the delay embedding forms three ellipses correspond-
ing to the three tones in time domain, each lying on a differ-
ent plane. Figure 2 illustrates the results of the sparse sub-
space clustering performed on time delay embedding of the
signal shown in Figure 1. Note that in order for the SSC al-
gorithm to perform accurately, the dimension of the ambient
space D needs to be greater than the dimensions of the sub-
space {dl}nl=1. Since this study deals with the planes, i.e.
d1 = d2 = d3 = 2, we have chosen an arbitrary large value
as the embedding dimension (D = 20). The sparse coeffi-
cients matrix W shown in Figure 2 - (a) includes three blocks
corresponding to the three lower dimensional subspaces. We

Fig. 5: left: Mean square frequency estimation error versus
SNR, right: MSE versus downsampling factor for SNR =
10dB

have assigned one index from the set {1, 2, 3} to each cluster.
The membership of each point in the delay embedding to each
of these clusters is represented in Figure 2- (b) validating the
correctness of the clustering method.

In the second experiment, we consider a signal with sim-
ilar characteristics but with time varying amplitude A(t) as
shown in Figure 3. In this case, the 3-dimensional delay em-
bedding of each tone is a set of ellipses with different sizes
of the circumscribed squares while they are still lying on the
same plane (Figure 3). Figure 4 represents the clustering re-
sults including the sparse coefficients matrix and the cluster-
ing groups indices.

White Gaussian noise with different SNRs has been added
to the signal, and PCA is used for finding the normal vector of
each plane after clustering. Equation (6) is then employed to
estimate the frequencies. Figure 5 shows the MSE of the fre-
quency estimation versus SNR whenN = 50 trials are carried
out for each SNR. The validation results for the robustness of
the proposed technique to downsampling is represented in the
plot on the right of Figure 5, where the MSE of the frequency
estimation is shown for different downsampling factors while
SNR is fixed at 10 dB. The original sampling frequency of
2kHz is used for the last plot.

4. CONCLUSION

In this study, we proposed higher dimensional delay coor-
dinate embedding as a tool to estimate distinct frequencies
in almost harmonic signals modeled as piecewise sinusoids,
where each tone has a time varying amplitude and phase. The
delay embedding point cloud forms a union of planes where
each plane corresponds to one frequency in the time domain.
Sparse subspace clustering is used to segment lower dimen-
sional subspaces in this point cloud, and a normal vector of
each segment is obtained using PCA in presence of additive
white Gaussian noise. The introduced technique is robust to
high downsampling factors, missing data points and uneven
sampling rates. The numerical results validate the promising
performance of the proposed algorithm.
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