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ABSTRACT
We propose a hybrid method for multi-exposure image fu-
sion in this paper. The fusion blends some images capturing
the same scene with different exposure times and produces a
high quality image. Based on the pixel-wise weighted mean,
many methods have been actively proposed, but their resul-
tant images have blurred edges and textures because of the
mean procedure. To overcome the disadvantages, the pro-
posed method separately fuses the means and details of input
images. The details are fused based on sparse representation,
and the results keep their sharpness. Consequently, the re-
sultant fused images are fine with sharp edges and textures.
Through simulations, we show that the proposed method out-
performs previous methods objectively and perceptually.

Index Terms— Multi-exposure image fusion, high-
dynamic-range imaging, weighted mean, sparse represen-
tation.

1. INTRODUCTION

When we take photos of natural scenes that include very dark
and very bright regions, their digital images often lose details
of these regions. In general, commonly used digital cameras
have narrower ranges of luminance than natural scenes [1, 2].
We cannot obtain details of regions whose luminance is out-
side camera ranges. These regions are commonly called satu-
ration regions.

To clearly represent scenes without saturation regions,
multi-exposure image fusion has been proposed [3–22]. It
fuses some images into one desired image. The input images
are obtained by taking photos of the same scene with different
exposure times, and the locations of their saturation regions
are different. Hence, the fused image fully represents the
scene without saturation regions.

Methods for multi-exposure image fusion are mainly clas-
sified into two types: weighted mean and gradient cascade.
The former type has been actively studied and includes the
greatest number of methods [3–19]. These methods fuse im-
ages by pixel-wise weighted mean. Various procedures for
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the weight calculation have been proposed. Recently, some
methods have aimed to prevent visual artifacts, such as mo-
tion blurs and ghosts [12–19]. The artifacts are caused by
movement of objects, and recent methods try to align objects
in the same locations. Consequently, these methods reduce
artifacts and produce natural images. In the gradient cascade
type, few methods have been proposed [20, 21]. These meth-
ods choose the maximum gradients of input images at each
pixel, and the resultant gradient field is defined as gradients
of the fused image. Finally, the gradients are transformed to
the spatial domain, and the result is the fused image. They
produce fine edges and textures in fused images.

Each of the two types has problems with fused images.
Due to the mean procedure, weighted mean methods produce
blurred images. In particular, edges and textures of their re-
sultant fused images are blurred. With the other type, errors
caused by noise and saturation are spread all over the image
via the transformation from the gradient domain to the spatial
domain, and the spreading amplifies the errors. Consequently,
unnatural regions occur in fused images.

Recently, sparse representation is widely used as funda-
mental technique in image processing [23–25], because it can
approximate images to have sharp edges and textures with-
out slight variations such as noises. Several image applica-
tions based on sparse representation have been proposed, and
achieve excellent results [23–25]. In the multi-exposure im-
age fusion, a method based on sparse representation has also
been proposed [22]. The method divides mean values and
residual components of each input image by patch unit, av-
erages the values, and fuses the components based on sparse
representation to produce sharp fused components. Unfortu-
nately, since the averaging procedure is poor and the fusion
is affected by saturation regions, fused images are visually
blurred and artifacts often occur.

To overcome the problems of previous methods, we pro-
pose a hybrid method for multi-exposure image fusion based
on weighted mean and sparse representation. The proposed
method produces averages and details of fused images by us-
ing weighted mean and sparse representation, respectively.
The details mean edges, local contrasts, and textures. Due
to the weighted mean method, the resultant average images
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are visually natural. For fusion of detail components, we use
the proposed selection method (which includes sparse rep-
resentation) to avoid blurs and effects of saturation regions.
Due to the proposed fusion, the resultant details have sharp
edges and textures. Consequently, the proposed method pro-
duces fine fused images without artifacts, and we show that
the proposed method outperforms previous methods through
simulations objectively and perceptually. We assume that the
object alignment is already finished by previous methods in
this paper, because the several alignment methods have been
proposed, and show their efficacy [2, 18]. Nowadays, tasks
for multi-exposure image fusion should be divided to be easy
solved. Hence, to show an efficacy of the proposed method
for the fusion, we take the assumption in this paper.

2. REVIEW

2.1. Fusion Method based on Weighted Mean

In this paper, we use a successful method of multi-exposure
image fusion based on weighted mean [10]. This method acts
in the multi-resolution domain using the Gaussian and Lapla-
cian pyramid [26].

The method consists of four processes: weight calcu-
lation, Laplacian pyramid decomposition of input images,
Gaussian pyramid decomposition of weights, and fusion. Let
X̂, Xl, Ŵl, L(·), and G(·) be the fused image, the l-th input
image, the normalized weights of Xl (l = 1, 2, · · · , L), and
the function for Laplacian and Gaussian pyramid decompo-
sition, respectively, where L is the number of input images.
The method fuses Xl with Ŵl to produce X̂, which is defined
as

L(X̂) =
L∑

l=1

G(Ŵl)L(Xl). (1)

The weights of each pixel are calculated based on three
measures: contrast, saturation and well-exposedness. The
contrast values are defined as the absolute values of the trans-
formed images, where each transformed image is calculated
by applying the Laplacian filter to the greyscale version of
the input image. The saturation values are the standard de-
viations within the colour channels at each pixel. The well-
exposedness is derived from the function f(x) = exp(−(x−
0.5)2/0.08). This function is separately applied to each chan-
nel at each pixel and the well-exposedness is obtained by
multiplying the results. Finally, weights are calculated as a
weighted multiplication of the results of the three measure-
ments and normalized.

2.2. Sparse Representation

Sparse representation is the approximation of input signals
with few pre-learned atoms. A set of the atoms is commonly
called a dictionary. Let x ∈ RM be the input signals. x

is approximated by a dictionary D ∈ RM×N (M < N ) as
x = Dα, where α ∈ RN means sparse coefficients that are
the solution of

argmin
α

||α||0 s.t. ||x−Dα||2 ≤ ϵ, (2)

|| · ||0 and || · ||2 are the l0 and l2 norm, respectively. From (2),
α has many zero and few non-zero numbers. (2) is a strict
formulation of the sparse representation. In general, to easily
realize sparse representation, the l0 norm is relaxed into the
l1 norm. Similar to the conventional method, we use the l1
version of (2) and the orthogonal matching pursuit method
[27] as its solver in this paper.

3. PROPOSED HYBRID METHOD

3.1. Framework

The proposed method is a hybrid of weighted mean and sparse
representation to separately produce average and texture com-
ponents of fused images from input images. Its framework is
shown in Fig. 1, where ‘Conv. method’ means the conven-
tional method of the weighted mean in Sec. 2.1. First, we
produce an initial version of the fused image by the weighted
mean method. Next, since the initial image has blurred edges
and textures, we subtract it from the input images to extract
variational components, where the luminance level of the ini-
tial image is adaptively adjusted to the luminance levels of the
input images. The variational components are fused based on
the sparse representation in Sec. 2.2 to keep their sharpness.
Finally, by adding the initial image and the fused components,
the proposed method produces a fine fused image.

3.2. Extraction of Variational Components

The extraction of variational components consists of three
steps: lowpass filtering, luminance adjustment, and subtrac-
tion. The initial image is purposely blurred by lowpass filter-
ing to enhance the extracted variational components. If this
process is skipped, values of the subtracted components are
slight like noise, and the proposed fusion in Sec. 3.3 is im-
paired. In this paper, we use a two-dimensional Gaussian fil-
ter with size 5× 5 and σ = 1.5 as the lowpass filter, where σ
is its standard deviation. The luminance adjustment shifts the
mean value of the blurred initial image to fit the mean values
of the input images by patch unit. Let x̂l,p (p = 1, 2, · · · ) be
the p-th adjusted patch for the l-th input image, and x̂l,p is
defined as

x̂l,p = x0,p + (µl,p − µ0,p)× 1, (3)

where x0,p, µl,p, µ0,p, and 1 are the p-th patch of the blurred
initial image, mean value of the p-th patch in the l-th input
image, mean value of x0,p, and vector whose components are
1, respectively. Finally, let xl,p and vl,p be the p-th patch in
the l-th input image and its variational components, and vl,p

is calculated as vl,p = xl,p − x̂l,p.
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Fig. 1: Block diagram of proposed method.

3.3. Fusion of Variational Components

The proposed method fuses sparse coefficients of the varia-
tional components of input images by weighted mean, and the
components of the fused image are calculated by the fused
coefficients. To avoid the effect of saturation regions in in-
put images and restrict the number of atoms used for the pro-
posed fusion, we calculate the weight based on the variances
of patches in the input images. Saturation regions generally
have low variances, and we mainly utilize patches whose vari-
ances are high because these patches usually have important
edges and textures. Therefore, when the patch variance is low,
we determine that the weight is also low and vice versa.

Let v̂p and α̂p be the variational components of the p-th
fused patch and their sparse coefficients, respectively. Based
on Sec. 2.2, v̂p = Dα̂p, and we define α̂p as

α̂p =
L∑

l=1

ŵl,pαl,p, (4)

where αl,p denotes sparse coefficients of vl,p, and ŵl,p is the
normalized weight defined as

ŵl,p = 1/Sp × g(σl,p),

Sp =
L∑

l=1

g(σl,p),

g(x) =


1 if x ≥ τ + ϵ

1/ϵ2 × (x− τ)2 if τ ≤ x ≤ τ + ϵ

0 if x ≤ τ

,

τ and ϵ are parameters to design g(·), and σl,p is the stan-
dard deviation of xl,p. Note that we define 1/0 × 0 = 0 in
(4). As mentioned above, the function g(·) controls weights
in accordance with the patch variances, shown in Fig. 2.

4. SIMULATION

The proposed method is compared with previous methods
[10, 15] and the easyHDR. The weighted mean methods in
Sec. 2.1 is chosen as conventional method [10], and a state-
of-the-art weighted mean method with object alignment is

Fig. 2: Function to determine weights for fusion of variational
components.

(a)

(b)

(c)

Fig. 3: Images of image sets at middle exposure time.

used [15]. The easyHDR is a commercial software for multi-
exposure image fusion. The source codes and the easyHDR
are available on the author’s website and www.easyhdr.com.
In the proposed method, the pre-learned dictionary is gener-
ated from images of various exposure time and many scenes
by the K-SVD [23], and the size of atoms is 5× 5.

We use 10 image sets of natural scenes, and the tone-
mapped image quality index (TMQI) [28] as an objective
measure. The test sets include three or four images per scene.
We show some images at middle exposure time in Fig. 3.
The TMQI measures tone-mapped images based on a modi-
fied structural similarity method between images before and
after tone-mapping and its statistical naturalness. The tone-
mapped images are produced by compressing the luminance
of their scenes into the desired range. The details of the im-
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(a) Input multi-exposure image set

(b) [10] (c) Prop. (d) [15] (e) easyHDR

Fig. 4: Fused images.

ages are fully represented. Hence, the fused images seem to
be the tone-mapped images, and the TMQI is valid as a mea-
sure for them. However, due to not obtaining images before
tone-mapping, we can only use the statistical naturalness.

The proposed method averagely shows better scores in the
TMQI than the others, as shown in Table 1, where ‘Prop.’ and
‘Average’ mean the proposed method and average values of
10 test sets, respectively. The values are in [0, 1] and a higher
one is better. The proposed method cannot always outper-
form the others, however it always shows high scores over
0.5, which is different from the others.

The proposed method obviously shows sharp edges and
clear textures in both dark and bright regions than the oth-
ers, as shown in Fig. 4. The result of Fig. 4 (b) seem to be
a blurred version of the proposed ones. Fig. 4 (d) has wrong
colour due to the false object alignment. The methods which
reduce the ghost artifact by the object alignment such as [15]
occasionally produce particular artifacts similar to Fig. 4 (d).
The easyHDR unnaturally enhances colour and shows blurred
edges. Therefore, we understand that the proposed method
perceptually outperforms the others.

Table 1: TMQI scores.
[10] Prop. [15] easyHDR

Fig. 3 (a) 0.934 0.943 0.503 0.613
Fig. 3 (b) 0.623 0.610 0.216 0.163
Fig. 3 (c) 0.679 0.682 0568 0.738
Average 0.554 0.639 0.444 0.464

6. CONCLUSION

In this paper, we propose a hybrid method for multi-exposure
image fusion based on weighted mean and sparse representa-
tion to produce average and variational components of fused
images, respectively. Because of the advantages of weighted
mean and sparse representation, the resultant fused images are
visually natural and have sharp edges and textures. The pro-
posed method shows better results than previous methods in
the simulations objectively and perceptually. As future work,
an alignment procedure considering the proposed algorithm
will be introduced.
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