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ABSTRACT
We propose a continuous measurement technique which can be used
to capture a large number of impulse responses within short time.
The response of an acoustic system is continuously captured by a
moving microphone, and the instantaneous impulse responses are
computed by post-processing. The time-variance due to the move-
ment of the microphone is compensated by employing a recently
proposed system identification method. In this method, each sam-
ple of the captured signal is interpreted as the orthogonal expansion
coefficient of the instantaneous impulse response. The impulse re-
sponses are computed from the interpolated orthogonal coefficients.
This method is applied to the measurement on a circle. Based on
the modal bandwidth of the spatio-temporal impulse response, the
relation among the length of the impulse response, the angular speed
of the microphone, and the effective number of measurements is re-
vealed. The presented measurement technique was used to measure
a large number of room impulse responses, and the results were com-
pared with a conventional sequential measurement technique.
Index Terms— Continuous measurement, circular array, sound field
analysis, time-variant system identification

1. INTRODUCTION

In sound field analysis, a sound field or a spatio-temporal impulse
response is commonly captured at multiple positions, and the de-
sired information is extracted from these [1, 2]. Most frequently,
the captured sound field is decomposed into directional components,
e.g., by a plane wave decomposition. Such an encoding is advanta-
geous as it is compatible with many sound reproduction techniques,
like sound field synthesis or binaural synthesis. In sound field syn-
thesis, each plane wave component is filtered by the corresponding
plane wave driving functions, and in binaural synthesis, by the cor-
responding far-field head-related impulse responses [3, 4].

The spatial resolution of sound field analysis is mainly determined
by the number of measurements. The measurement points have to
be distributed sufficiently dense, such that the spacing of adjacent
points is shorter than half the wavelength of the highest temporal fre-
quency component [5]. The required number of measurements com-
monly ranges from a few hundreds to several thousands. Performing
such a huge amount of measurements is a challenge in sound field
analysis. Two conventional strategies are usually used. (1) Simulta-
neous measurement using a microphone array. Although this is very
time-efficient, the original sound field is disturbed by the array itself
which is not acoustically transparent. Synchronously capturing such
a large number of audio signals is also limited by currently avail-
able hardware. Calibration and accurate placement of individual mi-

crophones is also not a trivial task [1, 6]. (2) Sequential measure-
ment using a single or few microphone(s). This circumvents most of
above-mentioned problems, at the cost of a long measurement time.
As the measurement time increases, the time-variance of the system
cannot be ignored, which is often caused by temperature drift in the
room or voice coil heating of the loudspeaker. Such system changes
are known to limit the signal-to-noise ratio improvement by averag-
ing [7, 8], and also degrade the performance of modal analysis [9].

Alternatively, the impulse responses can be measured continuously
by using a single microphone moving on a predefined trajectory. In
a continuous measurement, the system of interest is excited, not nec-
essarily but commonly, by a periodic signal, and the response is cap-
tured by a continuously moving microphone. The instantaneous im-
pulse responses are computed from the captured signal. Due to its re-
markable time-efficiency, continuous measurement techniques may
be preferred in high-resolution sound field analysis, where a mas-
sive number of impulse responses are needed. A series of continuous
measurement techniques have been proposed in the past decade [10–
14]. The main differences among the proposed methods are the
choice of the excitation signal, the underlying system model, and
the compensation of the time-variance due to the movement of the
microphone. The methods in [11] and [12] were employed for room
impulse responses, while the others were used for head-related im-
pulse responses or binaural room impulse responses [10, 13–15].

In this paper, the method proposed by the authors [14] is used to
measure the room impulse responses on a circle using a uniformly
moving microphone. It is shown that the effective number of mea-
surements is determined by the angular speed of the microphone and
the period of the excitation signal. To avoid temporal aliasing, the
latter has to be longer than the impulse response. The maximum
allowable angular speed is derived for a given configuration and re-
quired spatial resolution. In the following section, the spatial sam-
pling of the impulse responses on a circle is reviewed. Section 3
introduces the employed system identification method, and applies
it to circular measurements. In Sec. 4, the measurement results are
presented and compared with sequential measurements.

Nomenclature We consider discrete-time signals s(n) with a sam-
pling rate of fs. The discrete index n and k is used for time-domain
signals and impulse responses h(k), respectively. For convenience,
the discrete-time Fourier transform is denoted by S(ω), rather than
by S(eiΩ), where ω = Ωfs. The angular frequency is related to the
temporal frequency by ω = 2πf , and its maximum is given by the
Nyquist frequency ωmax = πfs. The speed of sound is denoted by c,
and the imaginary unit is defined by i2 = −1. Only the horizontal
plane (z = 0) is considered, and a polar coordinate representation is
used, x = (r, φ), where r =

√
x2 + y2, and φ = tan−1( y

x
).

23rd European Signal Processing Conference (EUSIPCO)

978-0-9928626-3-3/15/$31.00 ©2015 IEEE 2581



2. SPATIAL SAMPLING OF A SPATIO-TEMPORAL
IMPULSE RESPONSES ON A CIRCLE

The acoustic transmission from a sound source at xs = (rs, φs) to
a receiving point x = (r, φ) is characterized by the spatio-temporal
impulse response h(x,xs, k), or equivalently by the spatio-temporal
transfer function H(x,xs, ω). Throughout this paper, the sound
fields are assumed to be produced by a static sound source, and thus,
the source position vector xs is omitted. For convenience, the term
spatio-temporal is also omitted, in the remainder.

Consider the transfer function on a circle with radius r0 6= rs, cen-
tered at the origin. Due to the 2π-periodicity along the polar angle
φ, it can be represented by the circular harmonics expansion,

H(r0, φ, ω) =

∞∑
ν=−∞

H̊ν(r0, ω)eiνφ, (1)

where eiνφ is the ν-th circular harmonic (mode), and H̊ν(r0, ω) the
corresponding expansion coefficient (modal strength) given as

H̊ν(r0, ω) =
1

2π

∫ 2π

0

H(r0, φ, ω)e−iνφdφ. (2)

If a bounded circular region r < r0 is free of source and scatterer, the
modal spectrum H̊ν(r, ω) has a low-pass characteristic in the modal
domain [1, 2]. While most of the modal energy is concentrated in
|ν| < ω

c
r0, it rapidly decreases as |ν| increases beyond ω

c
r0. Thus,

ω
c
r0 is often considered as the approximate modal bandwidth for a

given frequency.

In practice, the transfer function is measured at a finite number of
positions. Typically, H(r0, φ, ω) is spatially sampled at equiangular
positions, φm = 2π

M
m,m = 0, . . . ,M − 1, which can be modeled

as multiplication with an impulse train [5],
∑M−1
m=0

M
2π
δ(φ − 2πm

M
),

where δ(·) is the Dirac delta function. In the modal domain, this
corresponds to the convolution with an impulse train with periodM .
This results in spectral replications that appear at inter multiples of
M ,

H̊ ′ν(r, ω) =
∑
µ∈Z

H̊ν+µM (r, ω), (3)

where H̊ ′ν(r, ω) denotes the modal coefficient of the discretized
transfer function. The replicated spectra (µ 6= 0) are superimposed
with the original modal spectrum (µ = 0), and thus, modal aliasing
occurs.

We are interested in the minimum value of M that avoids modal
aliasing in the high-energy part of the modal spectrum (|ν| < ω

c
r0),

such that the aliased energy is kept sufficiently low. As the modal
bandwidth is proportional to the temporal frequency ω, the modal
bandwidth of a sound field is determined by its maximum tempo-
ral frequency ωmax. Considering that the first spectral replications
appear at ν = ±M , the following condition can be derived,

M ≥ 2ωmaxr0

c
. (4)

This is often considered as the rule of thumb in modal analysis using
circular arrays [2, Eq. (3.43)] [16, Eq. (17)].

3. SYSTEM IDENTIFICATION

In this section, a system identification method is reviewed that is
suited for linear time-varying systems [14]. We assume that the
sound field captured by the microphone is represented by a linear
time-varying finite impulse response (FIR) model,

p(n) =

N−1∑
k=0

s(n− k)h(k, n), (5)

where p(n) is the captured (output) signal, s(n) the source (input)
signal, and h(k, n) the k-th coefficient of the impulse response at
time n. The length of h(k, n) satisfies N > Tmaxfs, where Tmax is
the maximum impulse response length, in seconds. In the employed
method, the system is periodically excited by a so-called perfect se-
quence, ψ(n) = ψ(n + N), which satisfies the ideal periodic auto-
correlation property,

ρψψ(m) =

N−1∑
n=0

ψ(n)ψ(n+m) = E × δ(m mod N)0 (6)

where δmn denotes the Kronecker delta, and E is the energy per
period. Without loss of generality, E is set to unity.

Equation (6) states that a circularly shifted sequence ψ(n − m) is
orthogonal to the original sequence ψ(n), whenever m is not an in-
teger multiple of N . We define a set of functions which consists of
N time-reversed and time-shifted perfect sequences,{

ψ(−n), ψ(1− n), . . . , ψ(N − 1− n)
}
. (7)

Due to the property (6), it forms an orthonormal basis set for RN .
By using the basis functions, an impulse response can be represented
as,

h(k, n) =

N−1∑
m=0

am(n)ψ(−k +m), k = 0, . . . , N − 1, (8)

where am(n) is the time-dependent expansion coefficient. If the
system is excited by a perfect sequence s(n) = ψ(n),

p(n) =

N−1∑
k=0

ψ(n− k)

N−1∑
m=0

am(n)ψ(−k +m) (9)

=

N−1∑
m=0

am(n)

N−1∑
k=0

ψ(n− k)ψ(m− k)︸ ︷︷ ︸
=δm(n mod N)

(10)

= a(n mod N)(n), (11)

which means that the output of the system is the (n mod N)-th or-
thogonal expansion coefficient at time n [14, 17]. In other words,
the individual orthogonal components of the system are sequentially
excited, and the corresponding coefficients are captured by the mi-
crophone. As each am(n) is observed only once per period (N sam-
ples), it is decimated by a factor of N ,

a′m(n) =

{
am(n) , if n mod N = m

0 , else
, (12)

where a′m(n) denotes the decimated coefficients.
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Fig. 1. Continuous measurement on a circle (N = 4, L = 16). The
sound field is produced by a loudspeaker on the x-axis driven by
the source signal s(n). A microphone is moving on the circle at an
angular speed of Ωφ. The gray circles indicate the position where the
discrete-time signals are captured. As shown in (b), the individual
expansion coefficients are observed one time per N samples. The
red circles indicate the positions where the coefficients are captured.
In this example, the effective number of spatial sampling positions
is L
N

= 4.

Now we consider that the microphone is moving on a circle r= r0

at a constant angular speed of Ωφ > 0, starting from φ0 = 0, as
shown in Fig. 1(a). The position of the microphone on the circle
is φn =

Ωφ
fs
n, and thus, h(n, k) = h(φn, k) and am(n) = am(φn).

The length of the captured signal within 2π-rotation is L=2πfs/Ωφ
samples. According to (12), each orthogonal coefficient is observed
at L

N
equiangular points on the circle, as illustrated in Fig. 1(b). The

effective number of spatial sampling points is Meff =
L
N

= 2πfs
ΩφN

, and
their positions are angularly shifted. The impulse responses cannot
be directly computed by (8), as the expansion coefficients belong
to different impulse responses. The intermediate values have to be
interpolated from the decimated coefficients. Note that, am(n) also
satisfies the physical properties discussed in Sec. 2. Therefore, to
recover am(n) accurately, Meff has to fulfill the condition given in
(4),

Meff ≥
2ωmaxr0

c
. (13)

When we substitute Meff = 2πfs
ΩφN

and ωmax = πfs into (13), the
condition for the angular speed is obtained,

Ωφ ≤
c

r0N
<

c

r0Tmaxfs
, (14)

where N > Tmaxfs is used in the second inequality. Interestingly,
this is very similar to the maximum allowable angular speed derived
in [12, Eq. (29)], c

r0(Tmaxfs−1)
, although the approach for continu-

ous measurement is quite different. When (14) is formulated with

respect to the tangential speed of the microphone vt = r0Ωφ,

vt
c
≤ 1

N
, (15)

meaning that the Mach number should be less than or equal to 1
N

.

If the condition in (13) or (14) is fulfilled, the expansion coefficients
can be computed by interpolation filters gm(φn),

âm(φn) =

M−1∑
l=0

a′m(φm+lN )gm(φn − φm+lN ), (16)

and finally, the impulse response coefficients are computed from (16)
using (8). The employed system identification method is flexible
in terms of the types of interpolation filter. In [15], we observed
that even a low-order interpolation method, like linear interpolation,
gives plausible results when applied to binaural room impulse re-
sponses measurement in dynamic acoustic scenes.

4. MEASUREMENT RESULTS AND DISCUSSION

The presented method was used to measure the impulse responses in
a rectangular room (W×L×H=5.8 m×5.0 m×3.0 m) at the Insti-
tute of Communications Engineering, University Rostock. The room
is moderately damped with absorptive material. The measurement
setup is similar to Fig. 1(a). The loudspeaker and the measurement
circle were placed at the same horizontal plane, at a height of 1.62 m.
The radius of the circle was r0 =0.5 m. An omni-directional micro-
phone was mounted on a motorized arm [18]. The sampling fre-
quency of the reproduced and recorded signals was fs = 44.1 kHz.
The system was excited by a periodic sweep [19], which satisfies (6).
The period was 2 s (88200 samples), sufficiently longer than the im-
pulse response of the room. The approximate maximum modal order
of the impulse response was 202 for c = 343 m/s. According to (4),
the required number of measurements was 404, and the correspond-
ing angular speed was 0.45◦/s. We chose Ωφ=0.25◦/s instead, and
thus, the effective number of measurement was Meff = 720. The or-
thonormal expansion coefficients were interpolated by using a sinc
function, symmetrically truncated to a length of 7. For comparison,
the same number of impulse responses were sequentially measured
using a logarithmic sweep with a length of 217 samples (≈ 3 s). The
measurement time was 26 minutes for the continuous measurement,
and about three times longer for the sequential measurement.

In Fig. 3, the impulse responses are shown both for continuous and
sequential measurements. In Fig. 3(c) and 3(d), only the earlier
parts (0–22 ms) are plotted, where most of the energy is concen-
trated and the temporal fine structure has perceptual importance. No
significant difference can be observed in the temporal structure of
the impulse responses. The reflections appearing just after the direct
sound (≈7 ms) are caused by the motorized arm that is positioned at
the center of the measurement circle. The later parts (145–167 ms)
are shown in Fig. 3(a) and 3(b). Note that the levels have different
scale than Fig. 3(c) and 3(d). The continuously measured impulse
responses suffer from slight artifacts, that seems to be caused by vi-
bration of the motor and frictional noise of the cables.

To evaluate the similarities and difference of the two data sets,
the cross-correlation ρ(φ, τ) was considered rather than the mean
square difference, as the latter is too sensitive to time shifts. In
fact, the impulse responses measured in the same setup do not dif-
fer significantly in its waveforms, but may have time offsets due
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Fig. 2. Comparison of the continuous measurements and the se-
quential measurements. (a) The maximum value of the normalized
cross-correlation, and (b) the corresponding time lag.

to the variability of the speed of sound. Prior to the computation
of the cross-correlation, the impulse responses were upsampled by
a factor of 10. The cross-correlation was normalized by the root
mean squares of both impulse responses. The maximum value of
ρ(φ, τ) was considered as a similarity measure of the waveforms.
The time-lag giving the maximum cross-correlation was computed,
τmax = arg maxτ{ρ(φ, τ)}, which is an estimate of the time delay
difference of the two impulse responses. For two perfectly identical
impulse responses, the maximum value of the normalized cross-
correlation would be equal to 1 appearing at τ = 0. In Fig. 2, the
results are indicated by dark blue lines. In 2(a), the maximum cor-
relation is mostly in the range between 0.97 and 0.98. The value of
τmax is quantized with an interval of 1

10fs
≈ 2.268 µs. It has only

non-positive values, meaning that the continuous measurements
tend to be delayed with respect to the sequential measurements.
The maximum difference is about 15 µs, corresponding to about
0.7 samples in the original sampling rate fs = 44.1 kHz. As a
reference, the cross-correlation and the time delay were also com-
puted for impulse responses measured 720 times at a fixed position.
Among them, 720 combinations were randomly selected and the
cross-correlations were computed. The mean value of the maxi-
mum cross-correlation (0.984) is shown with a gray dashed line in
Fig. 2(a), whereas the range corresponding to the standard deviation
of the time delay (±0.528 µs) is shown with a shaded region in
Fig. 2(b). It can be concluded that the waveforms of the impulse
responses are in a good accordance with each other, whereas there
exists a slight time shift which is less than 1 sampling period. It has
to be noted that the continuous and sequential measurements have
not been taken at the same time. This might have caused some of
the differences.

To observe the perceptual properties, both measurements were
used to generate a number of listening examples. Speech, cas-
tanets, and wide-band pink noise were filtered with the individual
impulse responses. In informal listening, no difference can be per-
ceived. The listening examples are available for download at http:
//spatialaudio.net/continuous_measurement/.

It is worth mentioning some practical issues in continuous measure-
ment. (1) As the microphone has to be accelerated until it reaches
the target angular speed, it has to be rotated slightly more than 2π
rad. The accelerating and decelerating parts of the captured signal
are discarded. (2) In our measurement setup, the motion of the mo-
tor and excitation signal were not perfectly synchronized. To tackle
this problem, an additional microphone was placed at a fixed posi-
tion, (r0, 0). The captured signal of that static microphone was later
used to estimate the time instant when the moving microphone was

at φ = 0. (3) The captured signal is often contaminated by vibration
and mechanical noise caused by the motorized arm, which strongly
depends on the rotational speed of the motor. In some cases, the
maximum angular speed derived in this paper might be impractical,
due to the resulting poor signal-to-noise ratio. Though, it is still an
open question how much noise is allowed in impulse response mea-
surements, e.g., for virtual acoustics applications.

5. CONCLUSION

We proposed a new continuous measurement technique for room im-
pulse responses. A massive number of impulse responses can be
measured within a short time frame. The maximum angular speed
of the microphone was derived based on the modal bandwidth of the
sound field on a circle. The presented method was used to continu-
ously measure a set of impulse responses, and the results were com-
pared with conventional sequential measurements. While the pro-
posed method is much more time-efficient, the measurement results
were comparable. The proposed technique has to be further verified
by using the measured impulse responses in sound field synthesis or
binaural synthesis [3, 4].

REFERENCES

[1] Achim Kuntz, Wave Field Analysis Using Virtual Circular Microphone
Arrays, Verlag Dr. Hut, 2008.

[2] Heinz Teutsch, Modal Array Signal Processing: Principles and Ap-
plications of Acoustic Wavefield Decomposition, vol. 348, Springer
Science & Business Media, 2007.

[3] Edo Hulsebos, Diemer de Vries, and Emmanuelle Bourdillat, “Im-
proved microphone array configurations for auralization of sound
fields by wave-field synthesis,” Journal of the Audio Engineering So-
ciety, vol. 50, no. 10, pp. 779–790, 2002.

[4] Sascha Spors, Hagen Wierstorf, and Matthias Geier, “Comparison of
modal versus delay-and-sum beamforming in the context of data-based
binaural synthesis,” in Audio Engineering Society Convention 132,
2012.

[5] Bernd Girod, Alexander Stenger, and Rudolf Rabenstein, Signals and
Systems, Wiley, 2001.

[6] Boaz Rafaely, “Analysis and design of spherical microphone arrays,”
Speech and Audio Processing, IEEE Transactions on, vol. 13, no. 1,
pp. 135–143, 2005.

[7] Michael Vorländer and Malte Kob, “Practical aspects of MLS mea-
surements in building acoustics,” Applied Acoustics, vol. 52, no. 3, pp.
239–258, 1997.

[8] Peter Svensson and Johan L. Nielsen, “Errors in MLS measurements
caused by time variance in acoustic systems,” Journal of the Audio
Engineering Society, vol. 47, no. 11, pp. 907–927, 1999.
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