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ABSTRACT

Autoregressive (AR) models are used in various applications,
from speech processing to radar signal analysis. In this pa-
per, our purpose is to extract different model subsets from a
set of two or more AR models. The approach operates with
the following steps: firstly the matrix composed of dissimilar-
ity measures between AR-model pairs are created. This can
be based on the symmetric Itakura divergence, the symmetric
Itakura-Saito divergence, the log-spectral distance or Jeffrey’s
divergence (JD), which corresponds to the symmetric version
of the Kullback-Leibler divergence. These matrices are then
transformed to get the same properties as correlation matrices.
Eigenvalue decompositions are performed to get the number
of AR-model subsets and the estimations of their cardinals.
Finally, K-means are used for classification. A comparative
study points out the relevance of the JD-based method. Illus-
trations with sea radar clutter are also provided.

Index Terms— Autoregressive model, Jeffrey’s diver-
gence, Itakura divergence, Itakura-Saito divergence, log-
spectral distance, K-means, classification.

1. INTRODUCTION

In many applications, autoregressive (AR) models are very
popular. For instance, in radar processing, the properties of
the Gaussian clutter can be analyzed by modeling it by an AR
process [1]. In biomedical applications [2], AR models can
be used to classify signals of patients with a specific pathol-
ogy from signals recorded with healthy people. In speech
processing such as speech analysis and Kalman- ﬁlter based
enhancement, M sets of p AR parameters {a} },~; , esti-

mated by different methods, are often compared one another
[3]. Most of the time, when M = 2, the authors use the
Itakura divergence (ID) or its symmetric version (SID). As an
alternative, since the i AR process can be seen as an infinite-
impulse-response filtering of a white noise process, it can be
defined by the poles {p;},—1,., of the corresponding transfer

function, namely H;(z) = m Comparing two
=1
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AR models amounts to compare the corresponding poles.
Therefore, a visual comparison is usually done by looking at
a figure which shows the poles in the unit disc in the z-plane.
Another method consists in computing the symmetric version
of the Itakura-Saito divergence (SISD) or the log-spectral
distance (LSD). It is based on the power spectral densities
(PSDs) of both AR processes that can be expressed from the
AR parameters and the variances of the driving processes. As
the SISD and the LSD are based on a continuous sum in the
frequency domain, they are approximated by discrete sums.
Nevertheless, to our knowledge, there is no method that
makes it possible to jointly compare more than two AR mod-
els at the same time. An idea would be to compare the set
of the AR parameters, the set of poles or the corresponding
PSDs. However it is not necessary an easy task, especially
when the number of the AR processes becomes large.

In [4], we recently proposed to compare various state-space
representations (SSRs), which are 1st-order Markov models,
in order to select the SSRs that could be used in multiple-
model based estimation approaches [5]. It was then applied
in the field of maneuvering-target tracking. In our approach,
the symmetric version of the Kullback-Leibler divergence
(KL), i.e. Jeffrey’s divergence (JD), between the joint dis-
tributions of the successive state-vector values associated to
two SSRs is first recursively computed. Then, at each in-
stant, the matrix composed of the JDs between the SSRs
is built. The matrices are then modified to have the same
properties as correlation matrices and hence to take advan-
tage of correlation-matrix analysis techniques. Therefore, the
eigenvalue decompositions of the resulting matrices allow the
number of model subsets to be deduced. Finally, K-means
are used for classification [6].

This paper deals with new ways to classify a set of various
p-order AR models into several model subsets. Therefore,
we first suggest extending the above approach [4] to p"-order
Markov models. Then, by replacing the JD by the SID, the
SISD or the LSD, three other methods can be derived. Finally
a comparative study between these four methods is carried
out. We will see that some of them seem to be a priori rele-
vant but their use is not straightforward in practice.

The rest of this paper is organized as follows: section 2 in-
troduces the notations and gives information about the SID,
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the SISD and the LSD. The recursive expression of the JD
applied to AR models is also presented. As it corresponds
to a specific case of what we proposed in [7], the main re-
sults are recalled. In section 3, the way to classify p"-order
AR-models is presented. In section 4, a comparative study is
carried out with synthetic data. Sea radar clutter data are also
used. Finally, conclusions and perspectives are drawn.

In the following, 7 and ¥ denote the transpose and the her-
mitian while * is the conjugate. 0;.; and 1;,; are matrices
of 7 x j zeros and ones respectively. I; is the identity matrix
of size ¢ x 7. Moreover, ® is the Hadamard product.

2. PRELIMINARIES

2.1. Notations

Let us consider M p™-order AR models:

P
T = — Za%xk_l + U;C i=1,....M

=1 )]
= XN+l i=1,., M

where u}, is a zero-mean white Gaussian process with vari-

ance o2. In addition, X,S,’i)l = [Tho1, o s Thop)s
0" =lai, ..., a}], 0" = [1 67 and AG = 6 — "

2.2. Definitions of the Itakura divergence (ID), the Itakura-
Saito divergence (ISD), their symmetric versions (SID and
SISD) and the Log-spectral distance (LSD)

When dealing with M = 2 AR models, the ID is defined by:

2 p(p+1) (p2\H
Dy =1 [ P07 2
01R§P+1)(91)H

with 7Y = E (X(”“))HX,?’_?)} the auto-

pi(X D) [ k=1

correlation matrix of X ,g’i +11)’ for the 7™ AR process.
The SID, the symmetric version of the ID, is defined as:

SIDi9 =1D13+ 1Dy >0 (3)

Concerning the ISD, it can be approximated by a discrete sum
based on NV angular-frequency values:

N

ISD;; ~— E N In R | ()
7N St Pi(2m %) P;(2m %)
- 2

where P;(w) is the PSD of the i™ AR model, which can be
expressed from o and H;(z). Given the above, the SISD is
deduced as follows:

SISDv5 =15D15 + 1SDo;

N_
1 E Pz(zﬂ'%)
N T

~
~

Concerning the LSD, it can be approximated by:

vz

-1

1 P1(27T£)
LSDyz =~ | — — L
SD12 N Py(2m )

n=—

2
[10111 } >0 (6)

2.3. Recursive computation of the Jeffrey’s divergence

To deduce the JD between the joint distributions of the succes-
sive values of two AR models, denoted p; (xo.) and pa(zo.x ),
the KL must be preliminary defined:

KLua(k) = pr(wos) n 208 g g
To.k pQ(xO:k)

In [7], we showed that the corresponding JD can be recur-
sively computed as follows:

JDa1 (k) = JD15(k) 2 KL1s(k) + K Ly (k)

(3)
= JDia(k — 1)+ A1z + B
where:
1[0 o2
Axg =—1+§ {‘722 + 21] =A212>20
Ul u
AGF NG
B = S (Tr [R{) == ©9)
us
AT
VAR >0
g

Since X7, and i, , are uncorrelated, R satisfies the fol-
lowing recursive equation:

R = C(@)RPCE) + 0% [101p1]"[1 011

_ _ _ (10)
ay  —ahy .. —ay,
L, Op-1)x1]
It should be noted that for any value of p, REP ) can be itera-
tively estimated with (10) by using a fixed-point method.
In addition, it is possible to compare AR models the orders of
which are different. Indeed, in this case, the end of the vector
that is the smallest among #* or 62 is padded with zeros so
that both can have the same size.
Finally, two properties are of interest:

1/ if A = 0, then By = 0.

with C(6")=|

2/ if the driving-process variances are equal, i.e. 02 = o2 ,
then A1 = 0. In this latter case, one has:
JD1s(k) = kJD12(1) = kBis (1

2.4. Remarks

Unlike ST D12, SIS D15 and LS D12, J D15 depends on time.
All are symmetric, always positive and null when the AR
models are the same.

In the following, let us address the comparison of several AR
models by using the above dissimilarity measures.
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3. FOUR APPROACHES FOR AR-MODEL
CLASSIFICATION

The four proposed methods operate with the same steps, but
differ by the dissimilarity measure that is used.

Step 1: When more than two AR models must be compared,
there are several dissimilarity measures to be studied simulta-
neously. For this reason, the dissimilarity measures, namely
{SIDy Y=\ ASTSDyHZ s ALSDyHZ 1y or
{JDij(k)})=1 1 are structured in a matrix form.

For SID, SISD and LSD, this leads to a dissimilarity matrix
D of size M x M and whose main diagonal is zero.

For the specific case of the JD-based method, there is one
matrix D(k) at each time instant &k = 1, ..., S, where S is the
sample number:

JDy1(k) =0 J D1y (k)
(k) = JD?(k) JDQ.?\?(k) 1)
JDap (k) JDyn(k) =0

If the initial conditions are the same, D(0) = Opsx . Given
(11), D(k) can be recursively computed as follows:

D(k) =kD(1) Vi >1 (13)

Step 2: In order the triangular inequality to be respected, a
shortest-path algorithm such as the Dijkstra algorithm must
be applied on the dissimilarity matrix, as proposed by [8].
For SID, SISD and LSD, this leads to a new matrix, denoted
W, with elements {W;;}/=} e

For the specific case of the JD-based method, Dijkstra algo-
rithm is applied on D(k) to get W (k), the elements of which
are {W;; (k) Y2170 -

Step 3: To deduce the number of AR-model subsets, we
suggest referring to different results dealing with correlation-
matrix analysis such as subspace methods, principal compo-
nent analysis, etc. [9].

For SID, SISD and LSD, the matrix W is transformed into a
matrix £ that has the same properties as a correlation matrix.
Its elements {E”}izllﬁ can be defined as follows:

E’L‘j = exp (—/\le) (14)

where \ is a scale parameter to be set by the practitioner.
Note that this setting will be discussed in the simulation part.
In this case, if SID;; = 0, SISD;; = 0 or LSD;; = 0,
W;; = 0. E;; is hence equal to the maximum value that can
be obtained, namely one. The higher the dissimilarity mea-
sure is, the smaller F;; is. In addition, the transformation (14)
emphasizes differences between small dissimilarity-measure
values and higher values.

For the specific case of the JD-based method, W (k) is trans-
formed into a matrix F (k) by following the same non-linear

transformation as in (14). The choice of the scale parameter
A will be discussed at the end of the next step.

Step 4: Eigenvalue decompositions are computed.

For SID, SISD and LSD, as the number of model subsets
should be a priori deduced from the number of predominant
eigenvalue analysis, a K{-means algorithm based classifica-
tion could be performed.

For the specific case of the JD-based method, the eigenvalues
of E(k) are analyzed over time. According to the Gershgorin
circle theorem [10] and as E(k) is semi-definite positive, the
eigenvalues of F'(k) are located in at least one of the intervals
[maz(0,1 — R;(k)), 1 + R;(k)] for i = 1,..., M, where
Ri(k) =00 Bij (k).

At time k = 0, the eigenvalues lie in the interval [0, M].
More particularly, one eigenvalue of F(0) = 1/ is equal
to M whereas the others are all equal to zero. Therefore,
there is a set of M similar AR models.

When k increases, according to (8)-(9), JD;;(k + 1) >
and R;(k) becomes smaller and smaller. All the eigenvalues
hence tend to 1, leading to M subsets of one AR model.
Therefore, the number of predominant eigenvalues, namely
those which are greater than one, provide information about
the subset number. Then, the K-means algorithm can be
used.

Remark about the scale-parameter setting: For the non-linear
transformation in the JD-based method, we suggest consid-
ering that AR models are “equally dissimilar” at time S so
that the eigenvalues are all close to one at this instant. The
non-diagonal elements of E(.S) must be hence close to zero
and under a threshold 7. If W,,,;,,(S) is the minimal value of

the elements {W;;(S) }ixj. A > — VJ“(Z)S).

4. SIMULATION RESULTS

Various sets of AR models have been tested. In this simula-
tion part, a comparative study is carried out between the four
proposed methods with a toy example. This helps the reader
to see the relevance of the JD-based method and the difficulty
to adjust the scale parameter A when using the three other
methods. Then, real radar sea clutter data are used.

4.1. Comparing M = 5 AR models

A set of five 2"-order AR models {AR;};—1_ s is studied.
Their AR parameters and corresponding poles are given in
Table 1. Note that the poles are deliberately chosen so that
two subsets of cardinals equal to 3 and 2 could be a priori
expected.

The values taken by the different dissimilarity measures
are not necessarily in the same ranges. When applying the
approaches based on SID, SISD and LSD, arbitrarily choos-
ing the scale parameter A\ leads to poor results, as depicted
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Model | a! ab Poles

AR, | -1.178 | 0462 | pl = 0.68 cap(in /6), p*
AR, | <1230 | 0504 | p? = 0.71 capl(in /6), p*
AR, | -1.282 | 0548 | p? = 0.74 capl(in [6), p*
ARy | 20530 | 0281 | p? = 0.53 eap(2in/3), p=
AR; | 20570 | 0325 | pt = 0.57 eap(2in /3), pi*

Table 1. AR parameters of the five 2"-order AR models and
their corresponding poles

by Table 2. Indeed, when X is very small, the components
of E are all close or equal to 1, leading to a predominant
eigenvalue close to 5 while the others are close to 0. When
A is very high, F tends to the identity matrix, leading to 5
eigenvalues equal to 1. In between, different values for the
eigenvalues {3;};=1, a=5 can be obtained. As an alterna-
tive, the selection of A could take into account the distribution
of the components of the dissimilarity matrix D. If D;; is
distributed according to the probability density function (pdf)
pp(d), then the pdf of E;; is pp(e) = pp(5tin(e)) if
e > 0 and zero otherwise. By setting the inverse of the scale
parameter, % at the maximum value, the mediane value or
the standard deviation (std) of the components of W, the pdf
of E; is modified. The maximum value is not a good choice.
Indeed, the components of 1/ can be very close or very far
one another, the components of the matrix E necessarily lie
in the interval [exzp(—1), 1]. This hence leads to poor results
when interpreting the eigenvalues of £. In this toy exam-
ple, the choice of std seems convenient according to Table 2,
but when using it in other cases, this setting is not necessar-
ily appropriate because the std alone cannot characterize the
multimodal distribution pp (d).

Depending on the choice made on A, the conclusions that can
be drawn on the eigenvalues {3;},=1, a may be erroneous.
Therefore, these three methods cannot be applied easily in
any case.

Methods | 31 | B2 | B3 | Ba | Bs
ISD 352 | 1.45 | 0.02 | 0.01 | 0.00
% =1 SISD 3.29 | 1.69 | 0.01 | 0.01 | 0.00
LSD 224 1 172 1 052 | 0.28 | 0.24
ISD 294 1 198 | 0.05 | 0.02 | 0.01
% =0.3 SISD 293 1 198 | 0.05 | 0.02 | 0.02
LSD 146 | 1.34 | 0.92 | 0.66 | 0.62
ISD 3.07 | 1.88 | 0.02 | 0.02 | 0.01
% = std SISD 3.08 | 1.88 | 0.02 | 0.01 | 0.01
LSD 275 1 176 | 0.26 | 0.12 | 0.11

Table 2. Eigenvalues of the matrix F for different scale pa-
rameters

Eigenvalue evolution
T T T T

/ predominant eigenvalues

L L L L L L L L L
0 5 10 15 20 25 30 35 40 45

Fig. 1. Evolution over time Of the eigenvalues of E (k)
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Unlike the other approaches, thanks to the time dimension
which is added in the JD-based method, two extreme cases
are introduced and serve as references to give a meaning to
the eigenvalues: one at £k = 0 corresponding to a set of M
models and the other at & = S corresponding to M sets
of one model. When using the approach based on the JD,
the key feature is hence the time evolutions of the eigenval-
ues. This is illustrated by Fig. 1 for the specific case of Ta-
ble 1. Even if some AR models belong to the same subset,
they necessarily differ one another over time. Therefore, all
eigenvalues converge to one. By modifying A, the conver-
gence can be more or less fast. In this toy example, there are
two predominant eigenvalues that are clearly higher than 1.
There are hence two AR-model subsets whose cardinals are
equal to 3 and 2. By using the K -means algorithm on W (k),
with K’ = 2 subsets, the three following subsets are obtained
{AR;, ARy, AR3}; {AR4, AR5}. This confirms what could
be initially expected from the model set design.

According to our tests including the one presented in this pa-
per, the approach based on the JD provides significant results
even if its computational cost is high (as there are S eigen-
value decompositions to be done).

4.2. Application with real data in radar signal processing

In this section, the relevance of the JD-based approach is
analyzed with real radar data in order to characterize the sim-
ilarity of real clutter data in terms of correlation properties.

In the framework of maritime surveillance, airborne radars
are used to detect targets at various ranges. The radar an-
tenna transmits a coherent burst of pulses with a given period.
Then, the received signal can be disturbed by thermal noise
as well as ground or sea returns, commonly called the “clut-
ter”. These disturbances can be problematic to detect targets,
specifically those with low speeds. To adress this problem,
approaches such as space time adaptive processing (STAP)
[11] require the inversion of the clutter correlation matrix.
This latter can be estimated in the maximum likelihood sense
by using the ’secondary data”, i.e. the data corresponding to
the area around the range cell of interest. However, there is no
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guarantee that these data have a priori the same statistical and
correlation properties. Statistical tests exist and are usually
used to charaterize the clutter homogeneity [12].

In this paper, our purpose is to compare in a ”simple” way
various sets of clutter data that have been recorded in flight
and to check whether they have the same kinds of correlation
properties. Each set of sea clutter data is composed of the
successive values of a range cell taken at different periods of
time corresponding to the burst period. For these data sets,
the AR parameters are estimated by using the Yule-Walker
equations [9] and the JD based-algorithm is used.

Example 1:

M = 6 sea clutter data sets are compared. Among them, we
deliberately choose four data sets characterizing only Gaus-
sian clutter and two data sets which are composed of Gaussian
clutter disturbed by the antenna secondary lobe effects related
to a target detection. The scale parameter is set at A = 1076,
The result of our approach is given by Fig. 2.

Eigenvalue-evolution

Predominant-eigenvalues

Eigenvalues

0

1

0 5 1‘0 1‘5 2‘0 léf) 3‘0 3‘5 4‘0 4‘5
Fig. 2. Evolution over time of the eigenvalues of E(k) for

non-homogeneous clutter data

The eigenvalue evolution characterizes two data subsets.
Therefore, they do not have the same correlation properties.

Example 2:

M = 6 sea clutter data sets are now selected without any a
priori. In this case, A = 10~2. The evolution of the eigenval-
ues is given by Fig. 3.

Among the eigenvalues, there is only one predominant eigen-
value. Hence, only a single subset of the six data sets can be
deduced. In other words, the data sets have the same correla-
tion properties and the set of clutter data can be considered as
homogeneous in terms of correlation.

5. CONCLUSIONS

This paper deals with the comparison of a set of AR mod-
els. Four methods have been proposed. Three are based on
the Itakura divergence, the Itakura-Saito divergence and the
log spectral distance. The last one uses Jeffrey’s divergence
between the joint distributions associated to the successive

Eigenvalue-evolution

Predominant-eigenvalue

Eigenvalues

0

1

0 é 1‘0 1‘5 26 2‘5 3b 3‘5 4‘0 4‘5
k

Fig. 3. Evolution over time of the eigenvalues of E(k) for

homogeneous clutter data with A = 1073

values of AR models. According to our simulations on syn-
thetic data, the JD-based method provides significant results
whereas the others are too sensitive to a scale parameter to
be tuned. Illustrations with radar sea clutter data confirm the
relevance of the JD-based method. We are currently investi-
gating an alternative approach in which the set of JD matrices
is seen as a tensor and a high-order singular value decompo-
sition is used.
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