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ABSTRACT
The Ensemble Kalman filter (EnKF) is a standard algorithm
in oceanography and meteorology, where it has got thousands
of citations. It is in these communities appreciated since it
scales much better with state dimension n than the standard
Kalman filter (KF). In short, the EnKF propagates ensembles
with N state realizations instead of mean values and covari-
ance matrices and thereby avoids the computational and stor-
age burden of working on n×nmatrices. Perhaps surprising,
very little attention has been devoted to the EnKF in the sig-
nal processing community. In an attempt to change this, we
present the EnKF in a Kalman filtering context. Furthermore,
its application to nonlinear problems is compared to sigma
point Kalman filters and the particle filter, so as to reveal new
insights and improvements for high-dimensional filtering al-
gorithms in general. A simulation example shows the EnKF
performance in a space debris tracking application.

Index Terms— Kalman filter, ensemble Kalman filter,
sigma point Kalman filter, UKF, particle filter

1. INTRODUCTION

The Ensemble Kalman Filter (EnKF) is an algorithm for state
estimation in high-dimensional state-space models. Its de-
velopment has been driven by applications in oceanography,
meteorology, and other geosciences, in which the state dimen-
sion can be in the order of millions [1].

With the ever increasing amount of available data, such
high-dimensional state estimation problems also become
more important in the signal processing community. Still,
the EnKF has been widely overlooked by signal processing
researchers. It is our intention to change this, first, by giving
a clear presentation that derives the EnKF from the linear
Kalman filter (KF) and, second, by giving some relations to
more familiar algorithms such as sigma point Kalman filters
(e.g., the UKF) and the particle filter (PF). We hope that this
leads to a cross-fertilization of ideas that will reveal new
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insights and improvements, both for the EnKF and filtering
algorithms for high-dimensional problems in general.

One reason for the lack of awareness towards the EnKF
is that its development took place in geoscientific rather than
signal processing journals. For example, the first EnKF pa-
per [2] was published in a geophysics journal; the paper [3]
which contains an important correction to [2] appeared in a
meteorological journal. Accordingly, application specific jar-
gon is often used: The KF time update or prediction step is
often termed forecast in EnKF literature; the measurement
update or correction step is termed analysis or data assimila-
tion. An extensive listing of geoscientific EnKF publications
is given in [4]. Popular KF references such as [5] or even
Kalman’s paper [6] are seldom cited in EnKF articles.

Some attention beyond the geoscientific context has been
devoted to the EnKF by the automatic control [7, 8] and statis-
tics communities [9–12]. In particular, a result that for linear
systems the EnKF converges to the KF as the number of en-
semble members tends to infinity has been reported by differ-
ent authors [12–14] rather recently.

The structure of the paper is as follows. Sec. 2 develops
the EnKF from the KF for linear systems. Sec. 3 shows how
the EnKF can be applied to nonlinear systems, and establishes
relations to sigma point Kalman filters and the particle filter.
A high-dimensional simulation example in which space de-
bris is tracked is presented in Sec. 4, and followed by some
concluding remarks.

2. FROM KALMAN FILTER TO ENSEMBLE
KALMAN FILTER IN LINEAR SYSTEMS

This section recalls the KF which is then used to derive the
ensemble updates in the EnKF. Furthermore, we discuss the
filter gain computation and several practical aspects.
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2.1. The Kalman Filter

We consider linear stochastic state-space models

xk+1 = Fxk +Gvk, (1a)
yk = Hxk + ek, (1b)

with an n-dimensional state x, an m-dimensional measure-
ment y, with E(x0) = x̂0, cov(x0) = P0, cov(vk) = Q and
cov(ek) = R. The Kalman filter [5] for (1) can be divided
into a time update of the state estimate and its covariance

x̂k+1|k = Fx̂k|k, (2a)

Pk+1|k = FPk|kF
T +GQGT ; (2b)

the computation of the predicted output and its covariance

ŷk|k−1 = Hx̂k|k−1, (3a)

Sk = HPk|k−1H
T +R; (3b)

and a measurement update of the state estimate and its covari-
ance

Kk = Pk|k−1H
TS−1k = MkS

−1
k , (4a)

x̂k|k = x̂k|k−1 +Kk(yk − ŷk|k−1) (4b)
= (I −KkH)x̂k|k−1 +Kkyk, (4c)

Pk|k = (I −KkH)Pk|k−1(I −KkH)T +KkRK
T
k . (4d)

Here, Pk|k is written in Joseph form which appears useful in
the upcoming discussion of the EnKF. It should be noted that
the inverse S−1k in the gain computation (4a) does not need
to be computed explicitly. Rather, it is numerically advis-
able to compute Kk by solving the linear system of equations
KkSk = Mk [15].

2.2. The Ensemble Kalman Filter

The KF is problematic in high-dimensional state-spaces be-
cause it requires storing and processing n×n covariance ma-
trices. Moreover, the full Pk|k and Pk|k−1 are hardly ever
useful as output information to the user. These motives led to
the development of the EnKF, which is based on the idea to
condense the information that is carried by x̂k|k and Pk|k into
samples. Specifically, the EnKF represents the filtering result
by an ensemble of N realizations {x(i)k }Ni=1 such that

x̄k|k = 1
N

N∑
i=1

x
(i)
k ≈ x̂k|k, (5a)

P̄k|k = 1
N−1

N∑
i=1

(
x
(i)
k − x̄k|k

)(
x
(i)
k − x̄k|k

)T ≈ Pk|k. (5b)

The ensemble can be stored in an n×N matrix Xk|k, which
also allows for the compact notation of the ensemble mean

and (unbiased) ensemble covariance

x̄k|k = 1
NXk|k1, (6a)

P̄k|k = 1
N−1X̃k|kX̃

T
k|k, (6b)

where 1 = [1, . . . , 1]T is an N -dimensional column vector
and X̃k|k = Xk|k − x̄k|k1

T is an ensemble of deviations
from x̄k|k. It turns out that computation and storage of the
large matrices in (5b) or (6b) is avoided in the EnKF, which
makes the algorithm attractive for solving high-dimensional
state estimation problems.

2.3. Ensemble propagation for a known Kalman gain

The EnKF time update corresponds to (2) and amounts to
computing an ensemble Xk+1|k that encodes x̂k+1|k and
Pk+1|k from Xk|k. This can be achieved with an ensemble
Vk = [v

(1)
k , . . . , v

(N)
k ] of N process noise realizations:

Xk+1|k = FXk|k +GVk. (7)

The EnKF time update amounts to a simulation. Conse-
quently, also continuous time and/or nonlinear dynamics can
be considered as long as state transitions can be simulated.
In fact, the time update is typically omitted in the EnKF lit-
erature [8], where an ensemble Xk|k−1 is often the starting
point.

In the EnKF measurement update, a prediction ensemble
Xk|k−1 is processed to obtain the filtering ensembleXk|k that
encodes the KF mean and covariance. For the moment, we as-
sume that the Kalman gain Kk is known but discuss its com-
putation in Sec. 2.4.

With Kk available, the KF update (4c) can be applied to
each ensemble member as follows

Xk|k = (I −KkH)Xk|k−1 +Kkyk1
T . (8)

The resulting ensemble average (6a) is the correct x̂k|k. How-
ever, with yk1T known, the sample covariance of Xk|k gives
only the first term of (4d) and therefore fails to encode Pk|k.
A solution [3] is to account for the missing term KkRK

T
k

by adding artificial zero-mean measurement noise realizations
Ek = [e

(1)
k , . . . , e

(N)
k ] with covariance R, according to

Xk|k = (I −KkH)Xk|k−1 +Kkyk1
T −KkEk. (9)

Then, Xk|k correctly encodes x̂k|k and Pk|k. The model (1)
is implicit in (9) because the matrix H appears. If we, similar
to (3), define a predicted output ensemble

Yk|k−1 = HXk|k−1 + Ek (10)

that encodes ŷk|k−1 and Sk, we can reformulate (9) to an up-
date that resembles (4b):

Xk|k = Xk|k−1 +Kk(yk1
T − Yk|k−1). (11)

In contrast to the update (9), (11) is merely sample based,
which is a useful property for the extension to nonlinear sys-
tems.
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2.4. Estimating the Kalman Gain

The preceding derivation of the EnKF assumed a known
gain Kk, which in the KF is a function of covariance ma-
trices. Accordingly, a more explicit version of (4a) can be
written as

Kk = MkS
−1
k = cov(xk, yk | y1:k−1) cov(yk | y1:k−1)−1.

(12)
The EnKF encodes predicted mean values and covariance

matrices via ensembles of random states (7) and outputs (10).
The fully deterministic Kk of (4a) is in (9) or (11) replaced
by the EnKF gain K̄k = M̄kS̄

−1
k . The randomness in M̄k

and S̄k implies a random K̄k. Below, we discuss methods for
computing the matrices M̄k and S̄k.

A direct way to compute M̄k and S̄k is to utilize Xk|k−1
from (7) and Yk|k−1 from (10). First, the ensemble averages
x̄k|k−1 = 1

NXk|k−11 and ȳk|k−1 = 1
N Yk|k−11 are used to

compute the deviation ensembles

X̃k|k−1 = Xk|k−1 − x̄k|k−11T , (13a)

Ỹk|k−1 = Yk|k−1 − ȳk|k−11T , (13b)

from which we can then obtain

M̄k = 1
N−1X̃k|k−1Ỹ

T
k|k−1, (13c)

S̄k = 1
N−1 Ỹk|k−1Ỹ

T
k|k−1. (13d)

The computations (13) are entirely sampling based, which is
useful for the upcoming nonlinear case. However, they inherit
errors due to the random sampling that can be avoided.

The basis for the KF is the knowledge how mean val-
ues and covariance matrices propagate through linear sys-
tems (1). Consequently, we can use model knowledge to
decrease the randomness in (13). First, we can replace the en-
semble averages in (13a) and (13b) by x̄k|k−1 = Fx̄k−1|k−1
and ȳk|k−1 = HFx̄k−1|k−1, with a previous filtering mean
x̄k−1|k−1. Second, we know that the measurement noise ek
is not correlated with the state and should not influence M̄k.
Therefore, we can work with an unperturbed output deviation
ensemble

Z̃k|k−1 = HXk|k−1 − ȳk|k−11T (14a)

to compute

M̄k = 1
N−1X̃k|k−1Z̃

T
k|k−1, (14b)

S̄k = 1
N−1 Z̃k|k−1Z̃

T
k|k−1 +R. (14c)

It should be noted that the above considerations do not apply
to the nonlinear systems of the next section. Neither (13) nor
(14) require the computation of n× n matrices.

2.5. Practical aspects

The practical challenges and remedies below have their ori-
gin in geoscientific applications, where the state-space mod-
els often come from discretizing partial differential equations

for spatially distributed grid points. They are described in a
dedicated chapter in [4].

The matrices M̄k and S̄k are estimated from data and sub-
ject to random sampling errors. For example, there might be
non-zero elements in M̄k where Mk is actually zero. This
can lead to unwanted correlation among state components, an
effect called spurious correlation in EnKF literature. A sug-
gested remedy is called localization and is based on the fact
that most measurements only affect a small subset of the en-
tire state vector. The idea is to carry out the measurement
update only for these specific states.

Furthermore, heuristics that rely on artificially increasing
the uncertainty are used to improve filter performance. The
method is called covariance inflation in EnKF literature and
amounts to increasing the spread of the ensembles. A similar-
ity can be seen to heuristics in the filtering literature, such as
the “fudge factor” of [16] and dithering in the PF [17].

3. THE ENSEMBLE KALMAN FILTER FOR
NONLINEAR SYSTEMS

The filtering problem in nonlinear and/or non-Gaussian state-
space models

xk+1 = f(xk, vk), (15a)
yk = h(xk, ek), (15b)

with known probability density functions p(x0), p(vk), and
p(ek) has an elegant conceptual solution: the Bayesian filter-
ing equations [18] recursively yield the posterior p(xk | y1:k).
Unfortunately, the required computations are intractable in all
but the simplest cases.

We have shown in the previous section that the EnKF
can be executed entirely sampling based. By overloading the
functions in (15) to accept ensembles as input, we see from

Xk+1|k = f(Xk|k, Vk), (16a)
Yk|k−1 = h(Xk|k−1, Ek) (16b)

that the EnKF with the measurement update (11) is applicable
to nonlinear systems.

This section highlights parallels between the EnKF and
two other (approximate) nonlinear filtering algorithms, sigma
point Kalman filters and the particle filter.

3.1. The EnKF and sigma point Kalman filters

Another class of sampling based algorithms that can be ap-
plied to (15) are sigma point Kalman filters such as the un-
scented KF [19, 20], or variants that are based on interpola-
tion [21] or numerical integration [21, 22]. All of [19–22]
share the measurement update (4), that yields an estimate
x̂k|k and a covariance Pk|k, with the KF. Hence, sigma point
Kalman filters share the storage requirements of the KF, and
inherit the problems that appear for large n.
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A similarity between EnKF and sigma point filters is that
samples are propagated according to (16). These samples are
called ensemble in the former and sigma points in the latter
class of filters. In contrast to the EnKF that retains the en-
semble, the sigma points are generated from x̂k|k and Pk|k at
the beginning of each iteration and also condensed into mean
values and covariance matrices before the measurement up-
date. Furthermore, each sigma point is assigned a weight. In
contrast to the random sampling in the EnKF, the sigma point
and weight generation is fully deterministic in all of [19–22].
Based on the viewpoint in the algorithm development, how-
ever, the sampling methodology and sample size differs.

As illustration, we sketch one possible UKF time update
for (15). Let r be the dimension of [xTk , v

T
k ]T andN = 2r+1.

First, N sigma points Xk|k and Vk, and an N -dimensional
weight vector wk|k are generated such that Xk|kwk|k = x̂k|k,
Vkwk|k = 0, and with Wk|k = diag(wk|k)[
Xk|k − x̂k|k1T

Vk

]
Wk

[
Xk|k − x̂k|k1T

Vk

]T
=

[
Pk|k 0

0 Q

]
. (17)

Second, the transformed sigma points Xk+1|k are gener-
ated via (16a). In contrast to the EnKF, however, Xk+1|k
is condensed into a mean value x̂k+1|k = Xk+1|kwk|k and
Pk+1|k = Xk+1|k(Wk|k − wk|kw

T
k|k)Xk+1|k. The latter

expression compactly denotes a weighted sample covariance.
A similar procedure yieldsMk and Sk, and eventually the

Kalman gain Kk. There is no randomness in the algorithm
and for linear systems, the UKF is equivalent to the KF. The
UKF gain computation is in fact similar to the one in EnKF,
except that all ensemble members are equally weighted in the
latter.

3.2. The EnKF and the Particle Filter

Similar to the EnKF, the particle filter (PF) retainsN samples,
called particles, throughout each iteration. The algorithm has
been developed to approximately solve the Bayesian filtering
equations [17, 23]. Using the principle of importance sam-
pling, the PF generates samples Xk|k−1 from a proposal dis-
tribution and then assigns weights wk|k such that weighted
particle averages approximate expected values with respect to
the posterior p(xk | y1:k).

The key difference between the EnKF and the PF is that
the PF samples are only generated once in each iteration, and
then left unchanged. In basic PF variants, the measurement
influences merely the weights wk|k, and the particles only in-
directly through a resampling step that is carried out to avoid
the problem of weight degeneracy [17]. More advanced PF
variants can make use of yk in the generation of samples [23].
The EnKF, in contrast, changes each ensemble member in the
measurement update.

For a specific choice of PF proposal distribution, char-
acterized by the transition density p(xk+1 |xk), the PF time

update amounts to a simulation of each particle with an inde-
pendent process noise realization similar to (16a). That is, the
EnKF and PF time updates are similar.

Particle filters are capable of solving severely nonlinear
and non-Gaussian problems, but can only be applied to low-
dimensional problems without further care. One reason for
this is the problem of generating meaningful samples in high-
dimensional spaces.

4. ENKF PERFORMANCE IN SIMULATIONS

Here a simulation is presented inspired by the problem to
track space debris, a growing problem in space aviation. The
example has been considerably simplified not to draw atten-
tion from the EnKF itself. Hence, the objects travel in 1D and
they are affected by the same external force, the solar wind,
effectively changing their speed. The nominal angular veloc-
ity of the object is chosen to represent debris orbiting earth at
a constant altitude of 100 km.

The trajectory of object i is modeled with a constant ve-
locity model, xi = [θi, ωi]T ,

xik+1 =

[
1 T
0 1

]
xik +

[
0
T

]
vk, (18a)

yik =
[
1 0

]
xik + eik. (18b)

The sample interval is T = 1 min, and measurements are
available every 10 min. At these times all objects can be ob-
served. The nominal object speed is ωn = 1.2 · 10−5 rad/s,
the measurement noise is Ri = cov(eik) = (1◦)2, the com-
mon process noise is Q = cov(vk) = (10−4/60)2, and the
initial uncertainty of each object state is P i

0 = cov(xi0) =
106 diag(Ri, Q).

The individual states are stacked to handle M objects.
The resulting model can be expressed using Kronecker prod-
uct notation

xk+1 = IM ⊗
[
1 T
0 1

]
xk + 1M ⊗

[
0
T

]
vk, (19a)

yk = IM ⊗
[
1 0

]
xk + ek, (19b)

where x has the dimension n = 2M .
100 Monte Carlo simulations each were performed for

different numbers of tracked objects M and different ensem-
ble sizes N . The result is presented in Fig. 1. The illustrated
MSE is computed as the average squared position error of all
objects over time. Of the total simulation time of 1 000 min
only the last 250 min are used for evaluation.

The result verifies that the EnKF converges to the KF as
N grows. However, as M and thus n increase, the ensem-
ble size N has to grow significantly in order to retain the KF
performance for the chosen example.
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Fig. 1. Time average of the position MSE as a function of the
ensemble size N , normalized by the KF MSE, for different
numbers of objects M . The state dimension is n = 2M . The
results are based on 100 Monte Carlo simulations.

5. CONCLUDING REMARKS

We have presented the ensemble Kalman filter (EnKF) in a
way that clearly shows its origin in the Kalman filter (KF), and
makes it easily accessible to the signal processing community.
We have discussed how the EnKF can be applied to nonlinear
non-Gaussian filtering problems and at the same time high-
lighted the similarities and differences to sigma point Kalman
filters and the particle filter (PF). The simulation experiment
shows that the EnKF gives the KF results for linear problems,
once the ensemble becomes large enough.

The EnKF is still an unexplored method in the signal pro-
cessing community. We have provided some initial insights
into the algorithm. However, we believe that this is only
the beginning and that cross-fertilization with other methods
is possible. Understanding the Kalman gain approximation
could be one key ingredient in this. Moreover, it is important
to characterize the model features that make the EnKF work
well in its successful applications.
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