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ABSTRACT

This work aims at improving the power amplifier (PA) ef-
ficiency in uplink OFDM-based cognitive radio (CR) com-
munications. Unlike the traditional approaches, we suggest
transmitting a non-linearily amplified signal without any fil-
tering and addressing the OFDM sample estimation from the
distorted signal at the receiver. The proposed post-distortion
and detection technique is based on a Volterra model for the
PA and the channel. As the transmission can switch from
one sub-band to another, the CR-PA behavior varies over time
and the Volterra kernels can be constant or suddenly change.
Therefore, an interactive multiple model (IMM) combining
extended Kalman filters is considered. The transition proba-
bility matrix, which plays a key role in the IMM, is also se-
quentially estimated. The resulting uplink system has various
advantages: it learns from the observations and a part of the
computational load is exported to the receiver, which is not
battery driven unlike the mobile terminal.

Index Terms— Power amplifier, digital post/pre-distortion,
cognitive radio, Volterra modeling, interacting multiple
model, transition probability matrix estimation.

1. INTRODUCTION

The cognitive radio (CR) offers a solution to the spectral
crowding problem by introducing the opportunistic usage of
frequency bands that are not heavily occupied by licensed
users. CRs can be used as secondary systems of current al-
location of licensed users. In this case, cognitive users detect
the unused spectrum to exploit it [1]. Hence, the CR must
have the ability to sense and to be aware of its operational
environment. It must dynamically adjust its radio operating
parameters accordingly.
Multicarrier transmission such as orthogonal frequency divi-
sion multiplexing (OFDM), filter bank multicarrier (FBMC)
and generalized frequency division multiplexing (GFDM)
have been recently proposed as possible waveforms for CR
thanks to their potential to fulfill the aforementioned require-
ments. However, these multicarrier modulations exhibit high
peak-to-average power ratio (PAPR).This involves that power
amplifiers (PAs) operate in their linear regions most of the
time, where efficiency is low. To save power on terminal

equipments, PAs must operate in their non-linear regions,
causing signal compression. This leads to signal waveform
distortion and adjacent-channel interference [2]. Power back-
off and PAPR reduction techniques reduce the non-linear
distortion effects but result in low power efficiency [3]. Oth-
erwise, a linearization technique can be used.

In this paper, a PA linearization technique for uplink com-
munication is developed. Unlike the existing approaches such
as [3], we propose 1/ to transmit an amplified signal without
any filtering and which has been non-linearly distorted. This
can be done because the CR can ensure that the harmonics
induced by the non-linearity do not disturb the licensed users.
2/ to export the computational load to the receiver, where
a post-distortion technique is developed. The proposed ap-
proach has the following features:

1. It is based on a Volterra model to take into account both
the PA behavior and the channel. As the equivalent
channel can be constant during a communication in one
sub-band but can suddenly change when one switches to
another frequency band, the Volterra kernels can remain
unchanged or be time-varying. This hence leads to a
Markov-jump system.

2. At the receiver, a joint estimation of both the input sig-
nal and the Volterra kernels is proposed. Since this is a
non-linear issue, an extended Kalman filter (EKF) can be
considered. As at least two models must be used to repre-
sent the time evolutions of the Volterra kernels, an IMM
structure combining different EKFs is proposed. How-
ever, the transition probability matrix (TPM), illustrating
the switching between the two types of the Volterra-kernel
evolutions, must be defined to use this IMM.
Few papers deal with the selection or the estimation of the
TPM. In addition, most of the time, the application is in
the field of target or aircraft tracking [4]. A first solution
is to set the TPM at a predefined value. As pointed out
by Bloomer in [5], this a priori selection can be done pro-
vided that the mean sojourn time in each model can be de-
termined. This is what we did in [6]. This choice is how-
ever too specific; it requires additional devices to estimate
the mean sojourn times. In addition, the predefined TPM
is not well suited if the system is non-stationary. As an
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alternative, Eun et al. suggest using fuzzy logic approach
to adjust the state transition probabilities [4]. Other au-
thors have proposed to estimate the TPM [7, 8]. In [7],
Jilkov et al. first give the state of the art on this topic
which includes Tugnait’s work [8]. Then, they propose
four algorithms: the so-called moment-based algorithm,
the second-order algorithm, the quasi-Bayesian TPM es-
timate and the numerical integration. After doing a com-
parative study between these four methods, we decided
to use the numerical integration algorithm as the others
may sometimes diverge. Although the TPM estimation
increases the computational cost compared to a predefined
choice of the TPM, the whole estimation process is more
flexible. As the TPM is adaptively estimated, this leads to
an adaptive IMM.

The proposed approach has hence the advantage of increasing
the PA efficiency at the transmitter. In uplink, it makes it pos-
sible to reduce the consumed power at the mobile terminal,
which is usually battery driven unlike the receiver.
The paper is organized as follows: the system model is de-
scribed in section 2. The proposed post-distortion and detec-
tion technique for non-time varying PA behavior as well as the
time-varying case are detailed in section 3. In the simulation-
result part, the performance and the limits of the proposed
algorithm are then discussed. More particularly, we focus our
attention on the TPM estimation.
In the following, (.)∗ is the complex conjugate, IN denotes
the identity matrix whose size is N × N , 0N×M is the zero
matrix whose size is N ×M , the bold variables are vectors or
matrices and the non-bold ones are scalars. Re(·) and Im(·)
are the real and imaginary parts respectively.

2. SYSTEM MODEL

The system model considered in this part is depicted in Fig. 1.
yk is the output sample of the equivalent channel composed of
the CR-PA and the multipath channel, nk is an additive zero-
mean white Gaussian noise (AWGN) with variance σ2

n, zk is
the received sample, ûk is the estimate of the CR-PA OFDM
input sample uk. The latter can be expressed as follows:

uk =
1√
L

L−1∑
l=0

Sl exp(j2πkl/L) (1)

where L is the IFFT size and Sl for l ∈ {0, · · · , L − 1} are
the symbols assumed to be uniformly distributed. The distri-
bution of uk can be approximated by a Gaussian distribution
with zero-mean and a variance proportional to L.

Fig. 1. System model.

Here, we suggest modeling the equivalent channel by a
P th-order Volterra model with memory depthM . yk is hence
written as follows [10]:

yk =

P∑
n=1

(2n+ 1)!

(n+ 1)!n!22n

M−1∑
τ1=0

. . .

M−1∑
τn=0

hn(τ1, . . . , τ2n+1, k)

×
n∏
s=0

u∗k−τs

2n+1∏
r=n+1

uk−τr (2)

where hn(τ1, τ2, . . . , τ2n+1, k) for n ∈ {0, · · · , P} denote
the Volterra kernels which depend on time k.

3. KALMAN ALGORITHMS FOR DIGITAL
POST-DISTORTION AND DETECTION

In this section, let us first present the KF-based detector when
the properties of the PA do not vary over time. Then, the
time-varying PA behavior case is studied. This happens in a
CR system when one switches from one sub-band to another.

3.1. Non time-varying PA behavior case
In order to estimate the Volterra kernels and the input signal,
let us introduce the state-space representation (SSR) of the
system depicted in Fig. 1 and defined by (2). Firstly, we pro-
pose to store the N Volterra kernels1 in a column vector Ck.
When the PA behavior does not change over time during the
communication, the Volterra kernels remain constant:

Ck = Ck−1 = Ck−1 + wk(mst) (3)

where wk(mst) is an AWGN with zero-mean and covariance
Q(mst) = 0N×N , the index st stands for static behavior.
To describe the way the OFDM input samples evolve over
time, the real and the imaginary parts of the M last OFDM
samples are stored in a column vector Dk of size 2M .

Dk =
[
Re(uk), Im(uk) · · ·Re(uk−M−1), Im(uk−M−1)

]T
= FDk−1 + G

[
Re(uk) Im(uk)

]T
(4)

with F =

(
02×2M
I2M−2 02M−2×2

)
and G =

(
I2

02M−2×2

)
.

Given (3)-(4), the time evolution of the state vector is:

xk =
[

DTk CTk
]T

= F′xk−1 + G′vk(mst) (5)

where F′ =

(
F 02M×N

0N×2M IN

)
,

G′ =

(
G 02M×N

0N×2 IN

)
and vk(mst) =

 Re(uk)
Im(uk)
wk(mst)

.

In addition, given (2), the state vector and the column vector
zk containing the real and the imaginary parts of zk satisfy:

zk =
[
Re(yk) Im(yk)

]T
+ nk = h(xk) + nk (6)

where nk is a zero-mean white Gaussian column vector with
covariance matrix σ2

nI2. Given the Gaussian assumptions on

1N depends on both M and P .
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uk and nk and due to the non-linearity relation (6), the state
vector can be sequentially estimated from the noisy observa-
tions from time 1 to k denoted as z1:k. Its a posteriori esti-
mate at time k satisfies:

x̂stk|k = E[xk|z1:k] =

∫
xkp(xk|z1:k)dxk (7)

One of the following algorithms can be used: 1/ an EKF
or a second-order EKF. 2/ sigma-point KFs that include the
unscented KF, the central difference KF, the cubature and
quadrature KFs [12]. In this application, as a 1st-order Tay-
lor expansion is a sufficient approximation of the non-linear
measurement function h(.), the EKF is a good compromise
between computational cost and estimation accuracy.
In the following, we show how to address the joint estima-
tions of the Volterra kernels and the PA input samples when
the PA behavior evolves over time.

3.2. Time-varying behavior case: a CR-PA behavior

3.2.1. Combining two EKFs in an IMM structure

The Volterra kernels could not be tracked by the EKF based
on (3). If they were modeled by random walks, i.e. if the
model noise wk in (3) was no longer zero but a zero-mean
AWGN with a non-zero variance, the EKF could track these
variations but it cannot provide accurate estimates of static
parameters.
For these reasons, two EKFs are used. They are based on
different a priori modeling of the Volterra-kernel time evo-
lution. The SSR of the first one corresponds to the one pre-
sented above whereas the SSR of the second one is similar
to (5), but the covariance matrix of the model noise wk be-
comes equal to Q(mld) = σ2

ldIN where the index ld stands
for large dynamics. Then, the estimators based on both as-
sumptions, labeled mst-EKF and mld-EKF, are combined in
an IMM structure. In this IMM, each EKF provides an esti-
mate of the state vector denoted as {x̂jk|k}j=st,ld and its as-

sociated error covariance matrix {Pjk|k}j=st,ld. Then, x̂jk|k is

weighted by µjk which is the probability that the system cor-
responds to the mode mj at time k, where mj = mst,mld.
All the weighted estimates are mixed together to get an esti-
mation of the state vector x̂k|k.
Designing an IMM seems quite an easy task but there are
some issues to be addressed, especially the definitions of the
transition probabilities between both SSRs.

3.2.2. About the transition probabilities

In the IMM, to update the mixing probabilities and the
a posteriori mode probabilities, respectively denoted as
µ
l|j
k−1|k−1 = P{Mk−1 = ml|Mk = mj} and µjk−1, the

system is assumed to be a Markov chain. The transition prob-
abilities between the modes ml at time k − 1 and mj at time
k denoted by pl,j with l, j = st, ld are stored in the TPM

denoted as Π as follows:

Π =

[
pst,st pst,ld = 1− pst,st

pld,st = 1− pld,ld pld,ld

]
(8)

Concerning its setting, two cases can be considered:
On the one hand, Π can be a priori defined. As it depends
on the two probabilities to stay in the states, namely pst,st
and pld,ld, and that the latter are related to the mean sojourn
time in a state2, one could make an assumption on the mean
sojourn time in each mode. Nevertheless, we would have to
collect the spectral resource availability in a database at each
cognitive terminal for a given time and localization. This is
what we suggest in [6]. Nevertheless, the properties of this
Markov chain could change after a certain time. In this case,
Π would have to be modified.
On the other hand, Π can be jointly estimated with the state
vector. In [7], four Bayesian algorithms are presented. They
all aim at recursively updating the probability density func-
tion (pdf) p(Π|z1:k) by using the following expression:

p(Π|z1:k) =
µk−1ΠΛk

µk−1Π̂k−1Λk
p(Π|z1:k−1) (9)

where µk−1 = [µstk−1, µ
ld
k−1]T and Λk are column vectors

containing the a posteriori probabilities and the EKFs like-
lihoods at times k − 1 and k respectively. In addition,
Π̂k−1 = E[Π|z1:k−1] is the estimation of Π given z1:k−1.
In the numerical integration method detailed in [7], Π̂k−1 is
expressed as a weighted sum of a set of predefined matrices.
The weights are recursively estimated with these steps:
• Choosing a set of q predefined matrices {Π(s)}s=1,··· ,q ,

with transition probabilities p(s)st,st and p(s)ld,ld,

• Calculating the weight p(s)k assigned to each predefined
matrix by using the a posteriori mode probabilities and
the EKF likelihood functions.

Details about the estimations of the TPM and the state vector
are given in Algorithm 1.

4. SIMULATIONS AND RESULTS

4.1. Case 1: Π never changes
Simulation protocol
The OFDM system in Fig.1 with a 16-QAM constellation and
128 subcarriers is considered. The non-linearity order P and
the memory depth M of the Volterra model are respectively
equal to 3 and 2. In addition, σ2

ld = 1. Then, let us define
the CR-PA model path (CMP) which is a set of Volterra-
parameter values recorded during a communication.

A toy example is considered where the CMP is generated
by a two-state Markov chain whose TPM is denoted ΠCMP ,
with transition probabilities pCMP

st,st and pCMP
ld,ld . Both states

2pj,j = 1 − 1/E[tj ] for j = st, ld where E[tj ] is the mean sojourn
time in mode j.
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correspond to two random walks with covariance matrix
Q(mst) or Q(mld). Using the CMP, the PA output samples
yk are generated using (2) and then disturbed by the AWGN
channel nk to get a given signal-to-noise ratio (SNR). The
TPM is estimated as well as the state vector by using Al-
gorithm 1. In this case, q = 225 matrices Π(s) are used.
The latter are defined by the transition probabilities p(s)ld,ld and

p
(s)
st,st which can take 15 values from 0.1 to 0.999 correspond-

ing to different mean sojourn times varying approximately
from 1 to 1000 sampling time. Our approach is then com-
pared with the mst-EKF alone, the mld-EKF alone and [6]
where the TPM is set to two different predefined values:
1/ Π = ΠCMP . It is labelled ”true predefined value”. The re-
sults we will obtain hence serve as a reference. However, this
ideal case does not reflect the way we could use the approach
in practice.

2/ Π =

[
0.5 0.5
0.5 0.5

]
. In this case, no a priori information is

provided. This is labelled ”bad predefined value”.

Comments on the online estimation of Π
Let us analyze the case if Π is accurately estimated. Ac-

cording to our simulations in the first protocol, the estimation
performance depends on the way the CMP has been gener-
ated (and more particularly on ΠCMP ) and on the set of the
predefined matrices {Π(s)}s=1,··· ,q .

1/ If ΠCMP is among the predefined matrices, two cases
may happen:
When pCMP

st,st is not too close to 1, for instance when

ΠCMP =

[
0.9 0.1
0.5 0.5

]
, Π̂k converges to ΠCMP after a

few tens of samples.
When pCMP

st,st is close to 1, for instance when

ΠCMP =

[
0.999 0.001
0.9 0.1

]
, the first row of Πk converges

to the first row of ΠCMP , but the estimation of the second
row is not necessarily reliable. This phenomenon can be
explained by the following reason: in the steady state of the
Markov chain, it can be easily shown that the probabilities
πCMP
st and πCMP

ld to be in the states st and ld satisfy:

πCMP
st =

1− pCMP
ld,ld

2− pCMP
st,st − pCMP

ld,ld

πCMP
ld =

1− pCMP
st,st

2− pCMP
st,st − pCMP

ld,ld

Therefore, πCMP
st is close to 1 and does not change much as

long as pCMP
ld,ld is not close to pCMP

st,st . As a consequence, the
algorithm cannot really estimate pCMP

ld,ld and it selects all the
predefined matrices having pst,st = 0.999.

2/ If ΠCMP is not among the predefined matrices and if
pCMP
st,st is close to 1, only the predefined matrices Π(s) whose

transition probabilities pst,st are close to pCMP
st,st have a pre-

dominant role in the estimation of Π.

Algorithm 1 Adaptive IMM including TPM estimation algo-
rithm - (∗) points out the additional steps regarding [6]

• (∗) Initially, setting the weights p(s)0 = 1
q

• Computing the mixing probabilities, for j, l = st, ld:

µ
l|j
k−1|k−1 =

1

cj
pl,jµ

l
k−1 with cj =

∑
l=st,ld

pl,jµ
l
k−1

• Deducing the merged means from the EKF estimates:

x̂0jk−1|k−1 =
∑
l=st,ld

x̂lk−1|k−1µ
l|j
k−1|k−1 j = st, ld

• Computing the estimation error covariance matrices:

P0j
k−1|k−1 =

∑
l=st,ld

µ
l|j
k−1|k−1{P

l
k−1|k−1

+ [x̂lk−1|k−1 − x̂0jk−1|k−1][x̂lk−1|k−1 − x̂0j
k−1|k−1]T }

• Expressing the likelihood functions from each EKF:
Λjk = N (zk;h(x̂jk|k−1), Sjk) j = st, ld

where h(x̂jk|k−1) is the predicted observation in the mj-

EKF by using x̂0jk−1|k−1.

• Updating the mode probabilities:

µjk =
1

c
Λjkc

j , j = st, ld where c =
∑
l=st,ld

Λjkc
j

• (*) Updating the weights:

p
(s)
k =

µk−1Π(s)Λk

µk−1Π̂k−1Λk
p
(s)
k−1 with s = 1, · · · , q

• (*) Estimating Π: Π̂k =
∑q
s=1 Π(s)p

(s)
k

• Mixing the EKF estimates to get a final state estimate:

x̂k|k =
∑

j=st,ld

µjkx̂jk|k

Comments on the state-vector estimation
The Volterra-parameter tracking performance are presented
in Fig. 2 for one realization. For the sake of clarity, only one
parameter is represented in the figure. When only using a
mst-EKF, the Volterra parameters can be estimated at the be-
ginning. Then, their variations cannot be tracked. Using a
mld-EKF, parameter tracking is faster but the estimate oscil-
lates much. However, the time spent to reach the new Volterra
value and the uncertainties on the estimates increase the BER.
When using the IMM, both the convergence rapidity and the
parameter estimate accuracy are obtained. Fig. 4 and Fig. 3
show that the IMM with TPM estimation performance is close
to those of the IMM based detector when Π = ΠCMP . The
TPM estimation provides a SNR gain of 0.86dB for BER
equal to 10−3 compared to the case when no a priori infor-
mation is provided.
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Fig. 2. Volterra parameter estimation comparison between the
adaptive IMM, the mst-EKF and the mld-EKF.
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Fig. 4. BER performance comparison.

4.2. Case 2: when Π varies over time

In this case, we aim at testing if the TPM parameters can
be tracked over time. The only difference between this sec-
ond simulation protocol and the first one is that the CMP is
now generated according to two successive TPMs, namely[

0.6 0.4
0.5 0.5

]
and

[
0.9 0.1
0.15 0.85

]
. According to Fig. 5, the

transition probabilities can be tracked thanks to the adaptive
IMM. It adapts itself to the changes of the mean sojourn time
of each state over time whereas the approach we propose
in [6] cannot. It provides a SNR gain of a few tenths dB for
any BER compared to [6].
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Fig. 5. TPM variation tracking.

5. CONCLUSIONS
To track the change of the CR-PA behavior, an IMM is used
to jointly estimate the CR-PA model parameters and to restore
the CR-PA input symbols. As the TPM choice impacts the
performance of the algorithm in terms of BER, it is proposed
to jointly estimate it with the state vector using the numerical
integration method. This leads to an adaptive IMM. Our paper
is also a complementary study to Jilkov’s work [7] since we
address particular cases of TPM and provide justifications of
the performance of the estimation algorithm.
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