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ABSTRACT

We investigate the problem of separating galaxy spectra from
their mixtures resulting from the slitless spectroscopy used
in the future Euclid space mission. This can be formulated
as a source separation problem where the structure of the
mixture is specific and depends on a low number of param-
eters. We first develop a mathematical model to describe the
observations generated by the near-infrared spectrograph of
Euclid, then propose non-blind, semi-blind and regularized
semi-blind methods to separate the spectra. The first simula-
tion results are encouraging: even for a signal to noise ratio
of 5 dB, our regularized semi-blind method succeeds in sepa-
rating the considered two spectra and provides a satisfactory
estimate of the emission line positions and amplitudes.

Index Terms— Semi-blind source separation, Euclid
mission, Spectrum decontamination, Slitless spectroscopy,
Optimization

1. INTRODUCTION

Euclid is an astronomy space mission under development by
the European Space Agency (ESA) [1]. Its launch is currently
planned for 2020. Its main mission is to better understand the
nature of dark energy, which represents around 68 % of the
Universe [2], and is generally accepted to be the source of
the increased acceleration of the Universe expansion. To this
end, Euclid will survey the sky with a near-infrared slitless
spectrograph providing spectra of about 50 million galaxies.
These spectra will be analyzed to measure the galaxy red-
shifts, i.e. increases in wavelength of emission lines due to
the expansion of the Universe. This measurement is based on
the detection of emission lines, mainly Ha, in the spectral.
The near-infrared spectrograph of Euclid will be equipped
with low-resolution grisms. A grism is a combination of a
diffraction grating and a prism, and is used to generate a dis-
persed spectrum (called a 2D spectrum) of astronomical ob-
jects. In general, spectroscopy in astronomy is performed
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!Ho is the brightest emission line observed in the spectrum of star-

forming galaxies, which occurs when a hydrogen electron falls from its third
to its second orbit.
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with a slit, allowing light from only a limited region of the
sky (e.g. a star or a galactic nucleus) to be diffracted. Slit-
less spectroscopy, used in Euclid, is however affected by the
confusion resulting from the superposition of 2D spectra of
neighboring objects. As an example, Figure 1 shows a special
case when the dispersed 2D spectra of two objects are mixed.
As mentioned in [3], at the depth of Euclid spectroscopic ob-
servations, essentially every spectrum is at least partially su-
perimposed to another. In such conditions, this contamination
is the main cause of redshift measurement failures, so that re-
ducing confusion produced by overlapping spectra is the first
concern.
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Fig. 1. Contamination of neighboring object spectra.

The decontamination of Eulid spectra may be considered
as a source separation problem which consists in estimating
a set of unknown source signals from their observed mix-
tures. In the usual blind case, one aims at estimating both
the source signals and the mixing model parameters. Blind
source separation algorithms are mainly based on statistical
independence of source signals, their non-negativity, or their
sparseness [4]. Nevertheless, when the mixing model is to-
tally or partially known, non-blind or semi-blind approaches
may also be used [5,6]. In the following, we first propose
a mathematical model describing the observed data obtained
with slitless spectrographs, then use this model to develop
non-blind and semi-blind source separation methods. In this
paper, we only consider first-order spectra generated by one
grism in one direction.

2. OBSERVATION MODELING

2.1. Signal model before the telescope

The signal before being observed by the telescope is com-
posed of astronomical objects (mainly galaxies) and the sky
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background. In the following, we assume that a precise esti-
mate of the sky background is available so that its contribu-
tion can be subtracted from the observations. Thus, we do not
consider it below. Each object with index ¢ may be defined
by its spectrum, s;(\), its center position, z; = [z;,y;], and
the parameters describing its light profile (and as a result its
shape). Hereafter, we assume that:

H1: The normalized spectrum for each object (i.e. its
spectral energy distribution) is the same for all object points.

H2: The light profile, i.e. the intensity of light in each
point of an object (as a function of its position with respect to
the object center) can be modeled by a 2D Gaussian function.

The three parameters of this Gaussian function (o, 0,
r;) can be determined from the object shape by modeling this
shape by an ellipse, characterized by its major axis, its minor
axis and its rotation angle.

HI is realistic for most of galaxies. H2 may be replaced
by more precise models of the light profile but can be used
as an approximation of the real model: it has been used in the
Euclid near-infrared spectrograph simulator (called TIPS) [7].

According to H1, the light intensity of an object with in-
dex i, at a wavelength A and at a point with coordinates (z,
y) can be modeled as ¢;(z,y,\) = s;(N) fi(z — =5,y — ¥4),
where (z;, y;) corresponds to the object center position and
fi(x — 24,y — y;) represents its light profile. Thanks to H2,
this light profile reads

filr — 2,y — i) =
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N[ T e T (1)
Yi Ti0a;0b; O,

where N (p, ) represents a 2D Gaussian function with mean
p and covariance X.

2.2. Object model after the PSF and before the grism

We assume that:

H3: The PSF (Point Spread Function) of the instrument
can be modeled by a linear combination of two circular 2D
Gaussian functions. This model is defined by three parame-
ters (o1, 02, ¢ = weighting coefficient):

wen=ar([2] (4 3]
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This model has been admitted to be sufficiently flexible for
providing a good approximation of the instrument PSF [8],
and has been used in the TIPS simulator [7]. In the general
case, the parameters of this model may change with wave-
length and position. However, in the current paper, we do not
take these variations into account. Anyway, the PSF varia-
tions being slow, it can be considered as locally constant.
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Each object with index % is spatially spread because of
its convolution with the instrument PSF. Thus, one obtains a
“new object” whose light intensity is defined by the following
equation:

wiled) = [ [ a0 Ao =y = o)dudy

= Si()‘)[fi(x — T, Y — Vi) * h(%y)]
=si()\)Ii(:c—a:,-,y—yz-), (3)

where I; represents “f; convolved by h”.

The convolution of two Gaussian functions is a Gaussian
function whose mean and covariance matrix are respectively
the sum of means and the sum of covariance matrices of the
two original Gaussian functions. Consequently:
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2.3. Object model after the grism

The observed image is then dispersed by a grism which may
generate spectra of different orders [9]. The grism will be op-
timized to concentrate most of light energy in the first-order
spectrum. However, zero-order and second-order spectra may
be non-negligible, specially for very bright objects. In this
paper, only the first-order spectrum will be considered. Nev-
ertheless, the consideration of the other orders does not fun-
damentally change the approach proposed in our paper.

The extension of the spectrum in the focal plane of detec-
tors is called the trace, which may be curved [9]. In this paper,
we assume that its curvature is negligible so that the trace will
be modeled by a horizontal line. The dispersion defines the
wavelength-domain resolution of the dispersed light. Consid-
ering a horizontal trace (in the x direction), for an object with
index ¢, we obtain at the grism output a 2D dispersed image
which reads [10]:

t(z, ) = /Q wi(@— D)y A, ()

where ) is the wavelength range covered by the grism and
D(X) represents the dispersion function in the x direction.
Using (3), and assuming a linear dispersion D(A) = a) + b,
we obtain

ti(z, y) = /Q L@ — o —aA — by — y)si(NdA. (6)

The above equation is established for real (i.e. non-integer)
values of  and y. In practice, the measured signal in a pixel of
detector, for an object with index 4, is the integral of ¢;(z,y)
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over the surface , of that pixel. The measured value for a
pixel with index p is then:

0i(p) = / / t:(, y)dady. )
(z,y)€Qp

Substituting ¢;(z,y) by its definition and after the dis-
cretization of the integrals using the rectangle method, we
finally obtain

o0i(p) = E m;i(p, Ai)si(Ar), €]

L/ A €QA
with
mi(pa >‘l) =
Z Z Ii(z; — s — aX; — b, yr — ys) ATAy A,
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where the step sizes Az, Ay, AX must be chosen according to
the resolution of the instrument and in particular the detectors.

2.4. Mixing model

When a pixel with index p receives photons from N objects,
the measured value in that pixel reads

N N L
o(p) = Zoi(P) =Y "> milp, M)si(N), (10)

i=1 [=1

where L is the number of considered wavelengths. Consid-
ering measured values in P pixels which receive radiations
from NN objects, we can then collect all these measured val-
ues in a vector o = [0(1), ...,0(P)]T. The mixing equation
can then be written in the following matrix form:

o = Ms, (1D

where s = [sTsT,...,s%]T represents the global vector of
sources with s; = [s;(A1), 8;(A2), ..., 85(AL)]T. The mixing
matrix M is the result of the concatenation of N matrices M;:

M=[M17M27"' 7MN]7 (12)

where the entry (p,l) of each matrix M; (of size P x L)
is equal to m;(p, \;) defined in (9). The mixture is over-
determined if P > (L x N).

The mathematical model proposed in this section is the
basis for the development of our source separation algorithms,
presented in the following section.

3. SOURCE SEPARATION METHODS

3.1. Non-blind method

In this first method, it is assumed that the object positions
2; = |z;,9i], the parameters of the shape of each object
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(04;,00;,73), and the PSF parameters (o1, 02, ¢) are known.
From these parameters, and subject to the validity of the
model described in the previous section, we can first cal-
culate the mixing matrix M, then use the mixing model to
obtain a least squares estimate of the sources by minimizing
the criterion J; = ||o — Ms||3%:

s = (MTM)~*M7o. (13)

3.2. Semi-blind method

In practice, the model proposed in the previous section would
not perfectly match the instrument model and its parameters
are not perfectly known. As a result, the non-blind method
is unlikely to provide satisfactory results. Thus, we propose a
more flexible semi-blind method which estimates the parame-
ters of the PSF, as well as the shape parameters of each object
together with the object spectra. Consider the vector of un-
known parameters 8 = [0, 09, ¢, {Uai;O'bi;ri}ie{l,...,N}]T
and suppose that 8 € [0,,in, @maz]- In this method, we as-
sume that @ is unknown but its variation domain, defined by
the extreme values 0,,,;, and 0,42, is known (using the phys-
ical constraints, the direct images, and our knowledge on the
instrument characteristics). We also assume that the object
center positions are known, thanks to the direct images.

The idea here is to minimize J; = ||o—M(8)s||3 with re-
spect to both 8 and s under the constraint 6 € [0,,in, Omaz]-
A simple and fast solution is to consider the optimal value
of s that minimizes the criterion J; for a given value of 6,
ie. 8§ =[M(0)TM(6)]'M(6)T o, to insert this value in the
criterion Jy which yields:

J2(8) = [lo — M(6)[M(6)"M(6)] " 'M(8) o|[3, (14)

and to run the following two-step algorithm:

1. Estimation of 6:
we use the fmincon MATLAB®) function to solve the
following constrained optimization problem:

0 = min (J2(0)|6 € [Omin, Omas]).  (15)

2. Estimation of s: N N
we calculate the mixing matrix M(0) from 6 estimated
in the first step, and we deduce from it the estimator of
spectra: § = [M(8)TM(8)]"*M(8) .

3.3. Regularized method

In a least squares problem, the matrix M can be ill-condi-
tioned, leading to a large number of possible solutions. In
this case, the addition of a regularization term can generally
improve results. Tikhonov regularization aims to improve the
conditioning of the problem by favoring a particular solution
with properties that seem relevant. The regularized criterion
then reads J3 = ||o — Ms||2 + ||T's||3 where T, the Tikhonov
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matrix, should be selected for the particular problem. In our
problem, we chose the following difference matrix to impose
a smoothing constraint:

2 -1 0 0 T
-1 2 -1
I'=« 0o -1 2 -1 -.1|> (16)
| O 0 -1 2 |

where the parameter « allows us to choose the weight of the
regularization term in the overall criterion. If the mixing ma-
trix M(0) is known, the minimum of J3 is achieved for

§= M) M) +T7T)'M(8) 0. a7)

Otherwise, we use the same approach as in Section 3.2, i.e.
we insert the above expression of § in J3 which yields:

J3(6) = |lo — M(8)[M(6)"M(6) + TTT]~"M(8)7 0|3
+|IT[M(0)"M(6) + TTT]'M(8)"oll3,  (18)

then, we estimate 0 by the constrained minimization of (18),
and we deduce § from it using (17).

4. SIMULATION RESULTS

4.1. Simulated data

The TIPS simulator [7] was used to simulate the observed
images of Euclid from a source catalog containing their lo-
cations, magnitudes, shapes, and spectra. We chose a sim-
ple simulation scenario using two realistic sources (galaxies
with redshifts 1.24 and 1.7). According to the simulator doc-
umentation, the chosen parameters to simulate the PSF are
o1 = 0.5, 09 = 2.8, and ¢ = 0.75. The two objects are
placed very close in the scene so that their spectra are highly
overlapping. The 2D spectrum corresponding to the 0 degree
red grism, obtained at the output of the simulator and shown
in Figure 2.a, is a mixture of the two original spectra. Know-
ing the positions of the objects, we chose five rows of pixels
(corresponding to xz € [862,1506] and y € [958, 962] in Fig-
ure 2.a) to build the observation vector o. Figure 2.b shows
the elements of this vector.

4.2. Results using noiseless data

After applying the non-blind method (using the same param-
eters as those used in the simulator), we observed that the es-
timated spectra did not exactly match the actual spectra. This
estimation error is due to the mismatch between our obser-
vation model developed in Section 2 and the model used in
the TIPS simulator. For example, the spatial and spectral step
sizes used in our observation model do not exactly correspond
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Fig. 2. (a) The 2D spectrum obtained at the TIPS output. (b)
The observation vector.

to those used in the TIPS simulator. These results illustrate
the main drawback of non-blind methods: they are highly
model-dependent. Indeed, if the model is totally correct, these
methods provide a very good estimate of the sources, but any
modeling error leads to unavoidable estimation errors.

We then tested our semi-blind method using the same
data, which led to a nearly perfect estimation of both spectra.
The Normalized Mean Square Error between the estimated
and actual spectra, defined as

NMSE = mean(si(}) — 8:(X))*]/mean[(s:(X)*], (19)
was 1.13% for object 1 and 0.82% for object 2.

4.3. Results using noisy data

We then added white Gaussian noise to the observations, to
obtain a Signal to Noise Ratio (SNR) of 10 dB. The elements
of the noisy observation vector are presented in Figure 3. In

15000
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Fig. 3. Noisy observation vector.

this case, our non-regularized semi-blind method led to a poor
estimation of the original spectra (see Figure 4.a).

@ (b)

A (nm)
Fig. 4. Comparison between the estimated spectrum (red solid
line) and the actual spectrum (black dashed line) of object 2:
(a) non-regularized semi-blind method, (b) regularized semi-
blind method.

A (nm)
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Then, we applied our regularized method using different
values of the weighting parameter &, which led to a much
better estimation. Figure 4.b shows the results obtained with
a = 5, which confirms the effectiveness of this method.

We also repeated the experiment using stronger noise, cor-
responding to an SNR of 5 dB. To measure the performance
of our method applied to noisy data, we can use the NMSE
criterion defined in (19). However, this criterion is not easily
interpretable. Indeed, our method does not aim at denois-
ing source spectra but at separating them. Even when the two
sources are perfectly separated, the NMSE criterion may have
high values due to the noise present in the estimated spec-
tra. Therefore, we propose the following additional criteria to
measure the quality of estimation of the emission lines:

e Relative error on the estimation of the position of the main

~

emission line, defined as Epos = (Apeak — Apeak)/Apeak-

e Relative error on the estimation of the amplitude of the
main emission line, defined as

~

Eamp = [si()\peak) - §i()\peak)]/5i()\peak)-

Table 1. Estimation errors (in %).

SNR o || Object | NMSE | Epos | Eamp
10dB || 2 1 4.18 0.06 | 7.28
2 4.85 0.06 | 1.22
5 1 2.70 0.06 | 6.69
2 2.73 0.00 | 1.98
10 1 2.26 0.06 | 8.62
2 2.19 0.00 2.2
5dB 2 1 11.51 0.06 | 11.58
2 13.88 0.11 | 11.48
5 1 7.46 0.00 | 8.64
2 8.38 0.11 | 10.81
10 1 6.12 0.00 | 9.94
2 6.43 0.06 | 10.19

Table 1 summarizes the results, which confirm the good per-
formance of our regularized method even in the presence of
high-level noise. Not surprisingly, the method performs bet-
ter when the SNR is higher. We remarked that the NMSE
decreases when « increases. This can be explained by the
effect of lowpass filtering, due to the smoothing constraint,
which contributes to the denoising of the estimated spectra.
However, if the value of « is increased too much, a deterio-
ration in the estimation of the amplitude of the main peak is
observed. In the general case, the choice of this parameter is
the result of a trade-off between the smoothing constraint and
the least squares criterion and generally depends on the SNR.
In these tests, the choice of o = 5 gives the best overall result.

S. CONCLUSION

In this paper, we first developed a mathematical model to de-
scribe the observations generated by the near-infrared spec-
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trograph of Euclid, then proposed non-blind and semi-blind
methods to separate the spectra of different objects. The first
simulation results are encouraging. Even for an SNR of 5 dB,
our regularized semi-blind method succeeds in separating the
considered two spectra and provides a satisfactory estimate of
the position and the amplitude of the He lines.

In our future works, we will perform other tests in other
configurations and with more realistic assumptions (non-
stationary noise, variant PSF). Moreover, so far we only
considered the observations obtained with a single grism and
in a single orientation angle. The exploitation of observa-
tions from all the available grisms and angles will yield better
results. We must also take into account the zero-order and
second-order spectra generated by the grisms and the possible
curvature of the dispersed spectra.
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