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ABSTRACT
This paper presents two different approaches to derive the asymp-
totic distributions of the robust Adaptive Normalized Matched Filter
(ANMF) under both H0 and H1 hypotheses. More precisely, the
ANMF has originally been derived under the assumption of partially
homogenous Gaussian noise, i.e. where the variance is different be-
tween the observation under test and the set of secondary data. We
propose in this work to relax the Gaussian hypothesis: we analyze
the ANMF built with robust estimators, namely the M -estimators
and the Tyler’s estimator, under the Complex Elliptically Symmet-
ric (CES) distributions framework. In this context, we derive two
asymptotic distributions for this robust ANMF. Firstly, we combine
the asymptotic properties of the robust estimators and the Gaussian-
based distribution of the ANMF at finite distance. Secondly, we di-
rectly derive the asymptotic distribution of the robust ANMF.

Index Terms— Adaptive Normalized Match Filter,M -estimators,
Tyler’s estimator, Complex Elliptically Symmetric distributions,
non-Gaussian detection, robust estimation theory.

1. INTRODUCTION

In the general statistical signal processing area, the detection prob-
lem is an important topic of research. For instance, one can cite
the works in radar processing [1–4]. Since in practice, the noise
parameters are unknown, an estimation step is required leading to
the so-called adaptive detection processes. Among these unknown
parameters, the noise Covariance Matrix (CM) is probably one of
the most important since the resulting performance of adaptive de-
tectors mainly relies on the estimation accuracy of this CM. This
is the case for the Adaptive Matched Filter (AMF) [5], the Kelly’s
test [6] and the Adaptive Normalized Matched Filter (ANMF) [1].
Generally, the CM is estimated thanks to the so-called Sample Co-
variance Matrix (SCM). Although this estimator is very simple and
provides optimal performance under a Gaussian noise, the resulting
adaptive detector performance can strongly be degraded when the
noise turned to be non-Gaussian, heterogeneous or when it contains
outliers/jammers.

To fill these gaps, a general framework on robust estimation
theory has been extensively studied in the statistical community in
the 1970s following the seminal works of Huber and Maronna [7,8].
The multivariate real case has been recently extended to the complex
case [9–11], more adapted for signal processing applications. Under
this robust theory framework, most of recent works in CM estima-
tion considers the broader class of Complex Elliptically Symmetric
(CES) distributions. A complete review on CES applied to array
processing can be found in [9].

In this CES framework, the so-called M -estimators [8] and the
Tyler’s estimator [11, 12] present alternatives to the Gaussian-based
SCM. Although these robust estimators provide good results in prac-
tice [10], the statistical analysis of the resulting adaptive detectors
is a difficult point. This is mainly due to the non explicit form of
these estimators, defined through fixed point equations. However,
their asymptotic properties have been recently derived in [9, 10].
Following these works, the aim of this paper is to derive the asymp-
totic properties of the ANMF built with these estimators, namely the
M -estimators and the Tyler’s estimator, under both H0 (absence of
target) and H1 (presence of target) hypotheses. The interest of such
an analysis is to provide a better statistical characterization of the
ANMF than the one based on the NMF [13].

The paper is organized as follows: next section provides the
general background of this work as well as a recall on the main re-
sults concerning the statistics of the NMF and ANMF detection tests
under both Gaussian assumption and CES distributions background.
Section III gives without proof, the results presented in [14] con-
cerning the asymptotic distribution of the ANMF built with robust
estimators. Then, Section IV presents two different ways to derive
the statistic of the ANMF built with any M-estimators for both H0

and H1 hypotheses. Finally, some conclusions and perspectives are
drawn in the last section.

The following convention is adopted: italic indicates a scalar
quantity, lower (resp. upper) case boldface indicates a vector (resp.
matrix) quantity and upper case boldface a matrix. T and H repre-
sent respectively the transpose and the transpose conjugate opera-
tors, Tr(.) denotes the trace operator, 1[0,1](.) is the [0, 1]-indicator
function, vec the vec operator and CN (respN ) stands for the com-
plex (resp. real) Gaussian distribution while CES stands for the
Complex Elliptically Symmetric distribution.

2. BACKGROUND

2.1. The Normalized Matched Filter (NMF)

Detecting a complex signal corrupted by an additive Gaussian noise
c ∼ CN (0, σ2 M) in a m-dimensional complex observation vector
y can be stated as the following binary hypothesis test:{

H0 : y = c yi = ci i = 1, . . . , N
H1 : y = αp + c yi = ci i = 1, . . . , N

, (1)

where p is a perfectly known complex steering vector, α is the un-
known signal amplitude and where the ci ∼ CN (0,M) are N
signal-free independent measurements, traditionally called the sec-
ondary data, used to estimate the background CM M. When the CM
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M is known and the variance σ2 is unknown, this binary hypothe-
sis test is solved by the Generalized Likelihood Ratio Test (GLRT)
theory leading to a well-known Normalized Matched Filter [13] de-
noted H(.) and defined on [0, 1] by

H(M) =
|pHM−1y|2

(pHM−1p)(yHM−1y)
. (2)

In order to derive the probability density function (PDF) of H(M)
under H1 and H0 hypothesis, let us set the signal-to-noise ratio
(SNR) equal to δ = α2 pHM−1 p/σ2. It can be shown in [4]
that H(M), derived for heterogeneous Gaussian environment, can
be rewritten as F/(F +1) where (m−1)F is distributed according
to a non-central F -distribution denoted by Fα1,α2,δ where α1 = 1,
α2 = m − 1 and where δ is the noncentrality parameter. The PDF
of F is given by:

pF (u) = (m− 1) e−δ (1 + u)−m 1F1

(
m, 1;

u δ

u+ 1

)
, (3)

where 1F1(α1, α2; .) is the complex confluent hypergeometric func-
tion. After a simple change of variable, the distribution of H(M)
takes the following form:

pH(M)(u) = e−δ β1,m−1(u) 1F1 (m, 1;u δ) , (4)

where β1,m−1(u) = (m−1) (1−u)m−2
1[0,1](u) is the PDF of β-

distribution with degrees of freedom 1 andm−1, denoted β(1,m−
1). Thus, setting δ to zero simply leads to the β(1,m − 1) PDF
for H(M) under H0 hypothesis. Hence, the theoretical relationship
between the detection threshold λ and the Probability of False Alarm
(PFA) is defined as:

Pfa = P(H(M) > λ|H0) = (1− λ)m−1 . (5)

This relation will serve as a benchmark since it characterizes the case
of a perfectly known covariance matrix for the detection test. When
δ 6= 0, the Probability of Detection Pd for a given SNR δ and for a
fixed value of the detection threshold λ is given by:

Pd = P(H(M) > λ|H1)

= 1− e−δ
∫ λ

0

β1,m−1(u) 1F1 (m, 1;u δ) du . (6)

Note that, for efficient numerical computation of the previous equa-
tion (for any non-zero noncentrality parameter of the confluent hy-
pergeometric function), it is better to use the following relationship:

1F1 (a, b; z) = ez 1F1 (b− a, b;−z) , (7)

leading to

Pd = 1−
∫ λ

0

β1,m−1(u) eδ (u−1)
1F1 (1−m, 1;−u δ) du . (8)

2.2. The Adaptive Normalized Matched Filter (ANMF)

When an estimate M̂ of the CM M is plugged into the NMF (two-
step GLRT), this results in the so-called ANMF or ACE (Adaptive
Coherence Estimator) [1, 3]. Assuming that the SCM, defined as

M̂SCM =
1

N

N∑
k=1

ck cHk is used, Kraut et al. have shown in [4]

that H(M̂SCM ) has the same distribution as
F̂

F̂ + 1
where F̂ ∼

Cχ2
1(δ)

Cχ2
N−m+1(0)

1

1− b and where b ∼ β(N −m + 2,m − 1). After

simple but fastidious derivations, one obtains:

fH(M̂SCM )(x) =
e−δ

K

∫ 1

0

uN−m+1 (1− u)m−1 (1− x)N−m

(1− ux)N−m+2

× 1F1

(
N −m+ 2, 1;

δ x (1− u)

1− xu

)
du , (9)

whereK =
Γ(N −m+ 1) Γ(m− 1)

Γ(N + 1)
. By setting δ = 0 in the pre-

vious equation, the resulting PDF fH(M̂SCM ) of H(M̂SCM ) under
H0 hypothesis can be retrieved [15]:

fH(M̂SCM )(x) =
(N −m+ 1) (m− 1)

N + 1
(1− x)N−m

× 2F1(N −m+ 2;N −m+ 2;N + 2;x) , (10)

where 2F1(.) is the hypergeometric function [16]. The theoretical
relationship between the detection threshold λ and the Probability of
False Alarm Pfa is defined as:

Pfa = P(H(M̂SCM ) > λ|H0) (11)

= (1− λ)N−m+1
2F1(N −m+ 2, N −m+ 1;N + 1;λ) ,

whereas the corresponding relationship between Pd and the SNR δ
for a fixed Pfa leads to:

Pd = P(H(M̂SCM ) > λ|H1)

= 1−
e−δ

K

∫ 1

0

du

∫ λ

0

uN−m+1 (1− u)m−1 (1− x)N−m

(1− ux)N−m+2

×1F1

(
N −m+ 2, 1;

δ x (1− u)

1− xu

)
dx . (12)

2.3. M-estimators, Tyler’s estimator and asymptotic properties

This section presents theM -estimators, the Tyler’s estimator as well
as their asymptotic properties. Details of the following results can be
found in [9, 10] for M -estimators and in [11, 12, 17] for the Tyler’s
estimator.

In the literature of radar detection and estimation, Spherically
Invariant Random Vector (SIRV) modeling and Complex Ellipti-
cal Symmetric distributions (CES), originally introduced by Kelker
in [18], have been considered and have been studied for their good
statistical properties and for their good fitting to experimental non-
Gaussian radar data [19]. They provide a multivariate location-scale
family of distributions that primarily serve as long tailed alternatives
to the multivariate Gaussian model. A good review on these distri-
butions can be found in [9, 20]. Let c be a m-dimensional complex
random vector. c follows a CES distribution if its PDF can be written
as

gc(c) = |Σ−1|hc

(
(c− µ)HΣ−1(c− µ)

)
, (13)

where hc : R+ → R+ is any function such that (13) defines a PDF,
µ is the statistical mean and Σ is a scatter matrix. It will be denoted
c ∼ CES(µ,Σ). Σ reflects the structure of the CM of c, i.e. the
covariance matrix is equal to Σ up to a scale factor. One can notice
that the Gaussian distribution is a particular case of CES. In this
paper, we will assume that µ = 0 and without loss of generality, the
scatter matrix will be taken equal to the CM M.
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Now, let (c1, ..., cN ) be aN -sample ofm-dimensional complex
independent vectors with ck ∼ CES(0,M), k = 1, . . . , N . The
M -estimators are defined as the unique solution of the following
equation

M̂ =
1

N

N∑
k=1

u
(
cHk M̂−1 ck

)
ck cHk , (14)

where u(.) stands for any real-valued function that satisfies a set
of general assumptions (see [9, 10]), mainly for ensuring the exis-
tence, uniqueness and convergence of the previous equation. Note
that MLEs are particular solutions of the previous equation.
An attractive and powerful estimator, independent of the CES dis-
tribution, is the Tyler’s estimator also called the Fixed Point and de-
fined as the solution of

M̂ =
m

N

N∑
k=1

ck cHk

cHk M̂−1 ck
. (15)

For allM -estimator M̂ which verifies equation (14), one has the
important asymptotical statistical behavior:
√
N
(

vec(M̂−M)
)

d−→ GCN
(
0m2,1,ΣM ,ΩM

)
, (16)

where M is the consistent limit of M̂ and GCN (0,ΣM ,ΩM ) de-
notes the Generalized Complex Normal distribution with ΣM the
covariance matrix and ΩM the pseudo-covariance matrix defined as

ΣM = ν1 MT ⊗M + ν2 vec(M) vec(M)H ,
ΩM = ν1 (MT ⊗M) K + ν2 vec(M) vec(M)T ,

(17)

where K is the commutation matrix which transforms vec(A) into
vec(AT ), ν1 and ν2 are real scalars relying on the CES distribution
and given in [9, 21].

It is important to notice that the previous result is also valid for
the SCM when the observations are Gaussian (ν1 = 1 and ν2 = 0,
see e.g. [22]) and for the Tyler’s estimator for CES-distributed obser-
vations (ν1 = (m+ 1)/m and ν2 = −(m+ 1)/m2, see e.g. [17]).
This shows that the asymptotic behavior of all these estimators is
similar. More precisely, the M -estimators and the Tyler’s estimator
behaves asymptotically the same as the SCM, it differs only from the
scalar quantities ν1 and ν2.

2.4. Asymptotic properties of the ANMF built with M-estimates

The asymptotic behavior of all the presented estimators can then be
extended to the ANMF thanks to the following result.

Let H(.) be a r-dimensional multivariate function on the set of
m × m positive-definite symmetric matrices with continuous first
partial derivatives and such as H(M) = H(αM) for all α > 0, i.e.
H(.) is homogeneous of degree 0. For all M̂ that verifies equation
(16), one has the following result, derived in [9, 21]:
√
N
(
H(M̂)−H(M)

)
d−→ GCN (0r,1,ΣH ,ΩH) , (18)

where ΣH and ΩH are defined as

ΣH = ν1H
′(M) (MT ⊗M)H ′(M)H ,

ΩH = ν1H
′(M) (MT ⊗M) KH ′(M)T ,

(19)

and H ′(M) =
∂H(M)

∂vec(M)
= (h′ij) with h′ij =

∂hi

∂mj
and mj’s de-

note the elements of vec(M), for j = 1, ...,m2.
When comparing to the asymptotic behavior of any function H with
SCM argument M, one obtains ν1 = 1. For any function H with
Tyler’s argument M, we obtain ν1 = (m + 1)/m. This explains

that any function H of M -estimators has the same asymptotic dis-
tribution than those of a Wishart matrix (SCM) with N/ν1 degrees
of freedom. It could also be interpreted as follows: under Gaussian
assumption, M -estimators require ν1N secondary data to reach the
same performance as the SCM.

3. ASYMPTOTIC BEHAVIOR OF THE ANMF TEST

The goal of this section is to propose two different ways of deriving
an approximate distribution of the test H(M̂) built with any M -
estimators under both H0 and H1 hypotheses. The first approach
consists in using the asymptotic distribution presented in section 2.4
for the different estimators while the second approach is to compute
analytically the parameters ΣH and ΩH characterizing the asymp-
totic distribution of the ANMF given by equation (18).

3.1. Correction of the degrees of freedom, compared to the
Gaussian-based SCM

Let us first consider the two ANMF PDF given by (9) under H1

hypothesis and (10) under H0 hypothesis. Note that these two equa-
tions provide the exact distributions of H(M̂SCM ) under both H0

and H1 hypotheses when the observations y,y1, ...,yN are Gaus-
sian distributed. Now, for N sufficiently large, equation (16) states
that aM -estimator built withN ν1 observations behaves as the SCM
built with N observations. Consequently, combining this result with
equations (9) and (10) or equivalently with equations (11) and (12),
leads to the approximate distribution forH(M̂) under both hypothe-
ses where M̂ stands for anyM -estimator or for the Tyler’s estimator.
The final theoretical relationship between the detection threshold λ
and Pfa = P(H(M̂) > λ|H0) and the theoretical relationship be-
tween λ and Pd = P(H(M̂) > λ|H1) are therefore given by

Pfa = (1− λ)a−1
2F1(a, a− 1; b− 1;λ) , (20)

and

Pd = 1−
e−δ

K

∫ 1

0

du

∫ λ

0

ua−1 (1− u)m−1 (1− x)a−2

(1− ux)a

× 1F1

(
a, 1;

δ x (1− u)

1− xu

)
dx , (21)

where K =
Γ(a− 1) Γ(m− 1)

Γ(b− 1)
, a = N/ν1 − m + 2 and b =

N/ν1 + 2.
As illustrated in the simulations and although no rigorous proof

is given, the previous result provides a very accurate PDF forH(M̂)
even for small N .

3.2. Asymptotic covariance of the ANMF

Let us now turn to the asymptotic distribution of the ANMF for any
CM estimator.

Proposition 3.1 Let us consider the ANMF test defined by

H(M̂) =
|pH M̂−1 y|2

(pH M̂−1 pH)(yH M̂−1 y)
. (22)

This function H(.) is homogeneous of degree 0 and one can ap-
ply result given in (18). For any estimator M̂ satisfying equation

23rd European Signal Processing Conference (EUSIPCO)

526



(16), one has
√
N
(
H(M̂)−H(M)

)
d−→ N (0,ΣH), where the

asymptotic variance ΣH and pseudo-covariance ΩH of the ANMF
statistic is given by

ΣH = ΩH = 2 ν1H(M) (H(M)− 1)2 . (23)

Proof 3.1 The proof has been recently derived in [14] and is omitted
here.

Notice that, contrary to the first approach, the previous asymp-
totic distribution is a distribution conditional to the observation y
that appears in H(M). Consequently, a supplementary step is re-
quired to obtain the asymptotic distribution ofH(M̂). Let us rewrite
the result of Proposition 3.1 as

H(M̂)
d−→ N

(
H(M),

2 ν1

N
H(M) (H(M)− 1)2

)
. (24)

4. EVALUATION OF PERFORMANCES

4.1. Evaluation of asymptotic performances under H0

According to result given by (24), for N large enough, considering

that H(M̂) ∼ N
(
X,σ2

X

)
where σ2

X =
2 ν1

N
X (X− 1)2 and X =

H(M) ∼ β(1,m − 1), one can obtain the asymptotic distribution
fa
H(M̂)

of H(M̂) as follows

fa
H(M̂)

(u) =

∫ 1

0

√
N exp

(
−

N (u− x)2

4 ν1 x (x− 1)2

)
√

4π ν1 x (x− 1)2
β1,m−1(x) dx .

(25)
Now, if we denote Φ(.) the cumulative distribution of the Nor-

mal distribution, one obtains the corresponding asymptotical Pfa-λ
relationship:

Pfa = 1−
∫ 1

0

β1,m−1(x) Φ

( √
N (λ− x)√

2 ν1 x (x− 1)2

)
dx (26)

4.2. Evaluation of asymptotic performances under H1

Here, we assume that the noise in the cell under test is Gaussian
distributed whereas the secondary data are CES distributed. In that
case, due to the fact that the M -estimator is independent of the CES
distribution, the distribution of H(M̂) under H1 hypothesis is given
by pH(M) in equation (4). According to the result given by (24),
for N large enough, considering that H(M̂) ∼ N

(
X,σ2

X

)
where

σ2
X =

2 ν1

N
X (X − 1)2 and X = H(M) ∼ pH(M), one can obtain

the asymptotic distribution fa
H(M̂)

of H(M̂) as follows

fa
H(M̂)

(u) =

∫ 1

0

√
N exp

(
−

N (u− x)2

4 ν1 x (x− 1)2

)
√

4π ν1 x (x− 1)2
pH(M)(x) dx .

(27)
where pH(M)(.) is given by (4). Following the same reasoning than
in the previous subsection, one obtains, for a given detection thresh-
old λ, the corresponding asymptotical Pd-δ relationship:

0 1 2 3 4

−3

−2

−1

0

−m log10(1− λ)

lo
g
1
0
(P
F
A
)

NMF - Eq.(5)
Asymptotic form - Eq.(26)
ANMF Tyler - Eq. (20)
Monte-Carlo

Fig. 1. Comparison between PFA-threshold relationships for the
NMF, the ANMF built with the Tyler’s estimator and its asymp-
totic form, m = 10, N = 200, ν1 = 1.1, p = [1, . . . , 1]T ,
y ∼ Kν where Kν is a multivariate K-distribution with shape pa-
rameter ν = 0.1 and covariance matrix M.

Pd = 1−
∫ 1

0

β1,m−1(x) eδ (x−1)
1F1 (1−m, 1;−x δ)

×Φ

( √
N (λ− x)√

2 ν1 x (x− 1)2

)
dx (28)

In the case where the cell under test contains CES noise, the PDF
pH(M) of H(M̂) under H1 hypothesis is no more given by (4) and
the performance of the test becomes very complicated to derive.

5. SIMULATIONS

In this section, we set the Toeplitz CM M whose entries are defined
as Mij = ρ|i−j| where ρ is equal to 0.5. Figure 1 shows the PFA-
threshold relationships for the NMF given by (5), the first approx-
imate distribution of the ANMF built with Tyler’s estimator given
by (20) and the asymptotic expression derived in (26) for the Tyler’s
estimator and the empirical PFA for the Tyler-ANMF, for N = 200
and m = 10, for K-distributed secondary data with shape parame-
ter ν = 0.1. First, the asymptotic regime is achieved and one can
observe a good agreement between the two asymptotic distributions
derived in this paper. Moreover, this shows that these two approx-
imations provide a very good characterization of the Tyler-ANMF
behavior (solid blue line).

Figure 2 shows the Pd-SNR relationships for the NMF (Equa-
tion (6) or (8)), the first approximate distribution of the ANMF built
with Tyler’s estimator (21), the asymptotic expression derived in (28)
for the Tyler’s estimator and the empirical Pd for the Tyler-ANMF
for m = 10, N = 500, for a PFA equal to Pfa = 10−3, for K-
distributed secondary data with shape parameter ν = 0.1 and for a
cell under test containing Gaussian noise. The asymptotic regime
is achieved and one can observe a good agreement between the two
asymptotic distributions derived in this paper.

6. CONCLUSION

In the context of robust detection in Gaussian or non-Gaussian noise,
two asymptotic distributions of the ANMF have been proposed for
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ANMF Probability of Detection - N = 500, m = 10, Pfa = 0.001

Gaussian NMF - Eq.(22)

Gaussian ANMF - Tyler - Eq.(30)

Gaussian Asymptotic form - Eq.(45)

Monte-Carlo

Fig. 2. Comparison between Pd and SNR δ relationships for the
ANMF built with Tyler’s estimator, m = 10, N = 500 and
Pfa = 10−3, p = [1, . . . , 1]T , {yi}i∈[1,N ] ∼ Kν where Kν is
a K-distribution with shape ν = 0.1. and y ∼ CN (αp,M)

both H0 and H1 hypotheses. More precisely, using robust CM es-
timators such as M -estimators or the Tyler’s estimator, two asymp-
totic approximations of the corresponding ANMF distribution have
been derived following different approaches. First, we have com-
bined the exact distribution of the ANMF built with the SCM under
Gaussian noise and the asymptotic properties of the robust estima-
tors. Finally, we have directly derived the asymptotic distribution
of the robust ANMF under CES environment. These results pro-
vide a very good approximation of the ANMF distribution even for a
small number of observations and have been applied to theoretically
regulate the false alarm probability and to evaluate the detection per-
formance. However, all these results are obtained considering a cell
under test containing Gaussian noise and secondary data character-
ized by CES noise. In the case where the cell under test is no more
Gaussian, further works have to be conducted.
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