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ABSTRACT 
 
In this paper the contribution of harmonics on frequency 
estimation obtained by the classical three-point interpo-
lated Fourier method is investigated in the case when 
noisy and harmonically distorted complex sinusoids are 
analyzed. To this aim the expressions for the frequency 
estimation error due to harmonics and the approximated 
combined variance of the frequency estimator due to both 
harmonics and wideband noise are derived. Using the 
obtained expressions the contributions of each harmonic 
and wideband noise on the frequency estimation error are 
then compared. The accuracies of the derived expressions 
are verified through computer simulations.  

 
Index Terms— complex sinusoid, error and statistical 

analysis, frequency estimation, harmonics, interpolated 
Fourier method   

 
1. INTRODUCTION 

 
In many engineering applications the frequency of a sinu-
soid need to be estimated accurately and in real-time. For 
this purpose Interpolated Discrete Fourier Transform 
(DFT) methods are commonly applied to the analyzed 
signal [1-10]. These methods provide accurate discrete 
frequency estimates and are very simple to understand and 
to implement. Essentially they are based on a two-step 
search procedure. In the first step (called coarse search) 
the peak location of the DFT spectrum of the analyzed 
signal is determined. That location corresponds to the 
rounded value of the signal discrete frequency expressed 
in bins. In the second step (called fine search) the interbin 
location is achieved by interpolating either the complex 
values or the module of the DFT samples related to the 
spectrum peak and its neighbors. The returned value 
represents the interbin location of the signal discrete fre-
quency expressed in bins. The sum of the results returned 
by the two steps of the procedure represents the estimated 
discrete signal frequency. 

In [5] Jacobsen and Kootsookos have suggested a 
three-point interpolated DFT estimator for complex sinu-
soids. The accuracy of that estimator, called JK estimator 
in the following, has been analyzed in the scientific litera-
ture only for noisy complex sinusoids. It has been shown 

that it exhibits a small bias [5,6]. However, in practice 
sinusoidal signals are often affected by harmonics, which 
have significant influence on the estimated frequency 
when the number of analyzed signal cycles is small. Un-
fortunately, the contribution of harmonics on the accuracy 
of the frequency estimates returned by the JK estimator 
(or the classical three-point interpolated DFT estimator) 
has not yet been analyzed in the scientific literature. This 
is the aim of this paper. For this purpose the expressions 
for the frequency estimation error due to harmonics, and 
the frequency estimator approximated combined variance 
due to both harmonics and wideband noise are derived. 
The obtained expressions allow the determination of the 
contribution of each harmonic to the frequency estimation 
error and its comparison with the effect of wideband 
noise. The derived theoretical results are verified by 
means of computer simulations.  
 
2. ANALYSIS OF THE CONTRIBUTIONS OF THE 

HARMONICS AND WIDEBAND NOISE  
 

The analyzed signal is a complex noisy and harmonically 
distorted discrete-time sinusoid, defined as: 
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where x(·)  is the harmonically distorted sinusoid, e(·) is a 
complex additive white Gaussian noise of zero mean and 
variance 2 , f is the signal discrete frequency, A1, and 1 
are the fundamental component amplitude and phase re-
spectively, Ah, and h are the amplitude and phase of the 
h-th harmonic, Nh is the maximum harmonic order, and M 
is the number of analyzed samples. Very often (1) is ob-
tained by sampling a continuous-time signal of frequency 
fin using a sampling rate fs. In that case, the discrete fre-
quency f can be expressed as: 
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where  represents the discrete frequency expressed in 
bins (or the number of analyzed sinusoid cycles), l is the 
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rounded value of , while  (-0.5   < 0.5) is the differ-
ence between  and l. It is well known that  = 0 corre-
sponds to coherent sampling, while noncoherent sampling 
(i.e.   0) usually occurs in practice due to the lack syn-
chronization between the acquired continuous-time signal 
and the sampling rate [11]. 

The DFT of the signal y(m) is:  
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where X(·) and E(·) are the DFT of the signal x(·) and the 
noise e(·), respectively, and W(·) is the Discrete-Time 
Fourier Transform (DTFT) of the rectangular window w(·) 
of length M. For /M << 1, W(·) can be approximated as: 
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The integer value l of the number of analyzed cycles  
can be estimated as the location of the peak of |Y(k)|, k = 
1, 2,…, M/2 – 1. If the frequency signal-to-noise ratio is 
higher than a threshold of about 16-18 dB, it can be accu-
rately obtained using a maximum search procedure ap-
plied to the discrete spectrum |Y(k)|, k = 1, 2,…, M/2 – 1 
[12]. 

Conversely, the fractional part  of  can be estimated 
by the JK estimator through the expression [5,6]: 
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where Re{·} denotes the real-value operator. 
It is well known that the contribution of harmonics on 

the accuracy of the estimator ̂ is high when  is small 
[11], [12]. Also, we assume that Nh·f < fs/2, i.e. all the 
harmonics are inside the baseband (0, fs/2). This imply 
that the number of acquired cycles related to the h-th har-
monic, h, is equal to h = h· = h·(l + ), h = 2, 3,…, Nh. 
In this case the estimator (5) is well approximated by the 
expression reported in the following proposition. 

Proposition: For the complex noisy and harmonically 
distorted signal (1) the estimator ̂ returned by (5) can be 
approximated as: 
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where h = h - 1. 
The proof of that proposition is given in the Appendix. 

From (6) it follows that the estimation error on   can 
be expressed as: 
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where  
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and 
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The terms h, h = 2, 3,…, Nh are due to the harmonics, 
while the term n is due to wideband noise. 

In the following we analyze both harmonically dis-
torted sinusoid and noisy and harmonically distorted sinu-
soid, respectively. 
 
a) Harmonically distorted sinusoid  

In this case, from (7) it follows that the estimation er-
ror on  is: 
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where h is given by (8). 
For a given value of , (8) shows that: 

-  h depends on the ratio Ah/A1 between the harmonic 
and the fundamental amplitudes ; 

- h has a sine-wave like behavior with respect to the 
phase difference h ; 

-  the error  is null when coherent sampling occurs, i.e. 
 = 0; 

-  the error h is null when || = 1/h or h +(h -1) = 
(2p + 1)/2, where p is an integer; 

-  the error |h| decreases as h increases and/or l increases. 
 
b) Noisy and harmonically distorted sinusoid 
Since usually the sampling rate is asynchronous with the 
signal frequency, the phases of the fundamental compo-
nent and harmonics vary randomly in subsequent acquisi-
tions. Hence, in the following we model the phase differ-
ences h, h = 1, 2,…, Nh as uniform random variables. 
As a consequence, the terms h can be modeled as random 
variables and the related contributions to the term h

~  can 
be considered statistically independent of each other and 
the noise contribution n. In fact they are due to different 
physical phenomena. Thus from (7) it follows that the 
approximated combined variance of the frequency estima-
tor ̂  can be expressed as [13]: 

23rd European Signal Processing Conference (EUSIPCO)

969



2
,ˆ

2

2
,ˆ

2
,ˆ

2
ˆ n

N

h
hnh

h


 



                  (11) 

where 



hN

h
hh

2

2
,ˆ   , is the contributeon due to the ran-

dom variable h
~  , in which h represents the power of the 
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and 2
,ˆ n is the variance contribution due to wideband 

noise, ant it is  given by [14]: 
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in which 22
1 /ASNR   is the Signal-to-Noise Ratio. 

For a given value of , remarks similar to those drawn 
from (8) can be derived also from (12). Moreover, (11) - 
(13) show that the contribution of harmonics becomes 
negligible as compared with the effect of noise when: 
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3. COMPUTER SIMULATIONS 

 
The aim of this section is to verify through computer 
simulations the accuracies of expressions (10) and (11) 
and the statistical performance of the estimator ̂ in the 
case of noisy and harmonically distorted sinusoids.  

The amplitude of the fundamental component is as-
sumed A1 = 1. The analyzed signals contain the 2nd, 3rd, 
and 4th harmonics, with amplitudes in the ratios 4:2:1 in 
such a way that the related Total Harmonic Distortion 
ratio (THD) is equal to 10%. The number of analyzed 
samples is M = 512. The discrete frequency   varies in 
the range [2.51, 12) bins with a step of 1/16. For each 
value of , 1000 records are considered by varying the 
phases of the fundamental component and harmonics at 
random.  

 
a) Harmonically distorted sinusoid  
Fig. 1 shows the maximum of the module of the frequency 
estimation error ||max returned by both (10) and simula-
tions as a function of .  
 

 
Fig. 1.  Error ||max returned  by (10) (solid line) and simula-

tions (crosses) versus . Harmonically distorted signal with THD = 
10%.  

As we can see, there is a very good agreement between 
theoretical and simulation results. It is worth noticing that 
the error ||max is mainly due to the 2nd harmonic 
since2max >> 3max and 2max >> 4max. Also, 
Fig. 1 proves that the error contribution due to h

~   be-
comes negligible when quasi-coherent sampling occurs, 
i.e.   0.    

Fig. 2 shows the absolute value of the bias of the esti-
mator ̂ as a function of . It can be seen that, for all the 
considered values of , the bias is negligible with respect 
to the maximum error reported in Fig.1, except when 
quasi-coherent sampling occurs. 

 

 

Fig. 2.  Absolute value of the bias of the estimator ̂ versus . 
Harmonically distorted signal with THD = 10%. 

b) Noisy and harmonically distorted sinusoid 
Fig. 3 shows the Mean Square Errors (MSE) of the esti-
mator ̂ and the approximated combined variance 2

̂  

returned by (11) as a function of  when the harmonically 
distorted sinewave considered above is corrupted by white 
Gaussian noise with zero mean and variance chosen to 
ensure a SNR = 40 dB. In addition, the MSE of the estima-
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tor ̂ obtained in the case of harmonics free signal is re-
ported in Fig. 3.  
 

 

Fig. 3.  MSE( ̂ ) returned by simulations (crosses), combined 

variance 2
̂  (11) (solid line). Harmonically distorted signal with 

SNR = 40 dB and THD = 10%. The MSE( ̂ ) returned by simula-
tions in the case of harmonics free signal is also reported to show 

the effect of wideband noise. 

 
Fig. 3 shows that the estimated frequency MSE and 

the combined variance 2
̂  are very close each other. This 

result holds for all the considered values of  since the 
frequency estimation bias is negligible as compared to the 
standard deviation. Also, Fig. 3 shows that the estimated 
frequency MSE related to harmonically distorted sinu-
soids is significantly higher than the MSE due only to 
wideband noise when  < 11. Indeed, when the number of 
observed sinusoid cycles is small harmonics prevail. Con-
versely, when  > 11 the contribution of wideband noise 
prevails over harmonics. It is worth noticing that the value 
of  above which the noise contribution prevails increases 
as SNR increases. Moreover, as in Fig. 1, Fig. 3 shows that 
the effect of harmonics is negligible when   0. 
 

4. CONCLUSIONS 
 
This paper focuses on the analysis of the contribution of 
harmonics on the frequency estimates returned by the 
three-point interpolated DFT method proposed in [5] and 
[6]. To this aim the expressions for the frequency estima-
tion error due to harmonics and the frequency estimator 
approximated combined variance have been derived in the 
case of a noisy and harmonically distorted sinusoid. The 
accuracies of the derived expressions have been con-
firmed through computer simulations. It has been shown 
that the harmonics affect the frequency estimator when the 
number of analyzed sinusoid cycles is quite small. In these 
situations the frequency estimator MSE is almost equal to 
the related approximated combined variance. Moreover, 
the accuracy of the frequency estimator can be improved 
by using windowing or including harmonics in the signal 

model, but at the cost of an increase computational burden 
of the derived frequency estimators. 
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APPENDIX 

Proof of the proposition 
 
We denote by  the ratio in (5) as:   
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Using (3) and dividing both the numerator and the de-
nominator of the above expression 
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calculations we obtain the expression (A.2) given at the 
bottom of the page. 

Since the module of the last two terms in the denomi-
nator of (A.2) is much less than 1 and the product of terms 
related to harmonics and/or wideband noise is negligible 
(with high probability) as compared with the others, the 
ratio  can be accurately approximated by the expression 
(A.3) given at the bottom of the page. 

Using (4) the following equalities can be obtained: 
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By replacing (A.4) – (A.7) in (A.3), after some algebra 
the following equality can be derived: 
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By applying the real-value operator to (A.8) the ex-
pression (6) is finally achieved. 
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