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ABSTRACT

Over the past decade, there has been much focus on mobile
ad-hoc sensor networks. The mobility alleviates several is-
sues relating to sensor network coverage and connectivity,
whereas aggravates the difficulties of applications such as tar-
get tracking. Traditional solutions always localize the sensors
first, and then track the target. In contrast, cooperative simul-
taneous localization and tracking (CoSLAT) adopts both the
sensor-target and the inter-sensor observations to simultane-
ously refine the target and the sensor estimates. We propose a
distributed variational filtering (VF) algorithm for CoSLAT,
which greatly cuts down the estimate errors, while having
nearly the same complexity as the traditional particle filtering
(PF) algorithm. In addition, the update and the approximation
of the a posteriori distribution are jointly performed by the
VF, yielding a natural and adaptive compression. Since the
temporal dependence is reduced from a great number of par-
ticles to one Gaussian component, the communication cost is
significantly diminished.

Index Terms— Variational Filtering; Cooperative Simul-
taneous Localization and Tracking; Mobile Ad-hoc sensor
NETworks

1. INTRODUCTION

Mobile Ad-hoc sensor NETworks (MANETS) are a particular
class of wireless sensor networks (WSN), in which mobil-
ity plays a key role. The mobility endows MANETs with
significant advantages, such as low-cost, easy-deployment,
self-management and no requirement for established infras-
tructure etc., compared with the traditional way of manual
deployment or the expensive way of GPS receiver equipping
[1-3]. The dominant inference tasks of WSN include sensor
localization (SL) and target tracking (TT) [4, 5], where TT
requires the sensor positions known a prior:. Therefore,
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traditional solutions first localize the mobile sensors, then
these estimated sensor locations, along with the sensor-target
observations, are used for TT. However, the first localiza-
tion then tracking (FLTT) approach is sub-optimal, since the
sensor-target observations are not used to refine the sensor
positions [6]. Particularly in the case of MANETS, the mo-
bility of the sensors emphasizes the online update of sensor
locations. In contrast to the FLTT approach, simultaneous lo-
calization and tracking (SLAT) [7], applies the sensor-target
observations to track a target while simultaneously localiz-
ing the static sensors. However, the SLAT algorithm needs
to be executed centralized, due to the significantly higher
complexity than FLTT. Meyer [5] introduced a framework of
cooperative SLAT (CoSLAT), which extends the SLAT by
using inter-sensor measurements, thus could be adopted to
MANETs. Unfortunately, the proposed CoSLAT algorithm
suffers from high computation and communication costs due
to the particle-based message representation. Therefore, they
proposed an advanced hybrid particle-based and parametric
message passing algorithm for CoSLAT in [8], where a Gaus-
sian Mixture Model (GMM) was adopted to approximate
the marginal posterior distribution, leading to a reduction of
the belief propagation. On the contrary, the propagation of
inference errors is unavoidable, due to the approximation of
the marginal posterior distribution. In this paper, we em-
ploy the variational method in the place of mixture gaussian
model to approximate the joint state during the measurement
incorporation phase, avoiding description complexity and un-
necessary communication. Since the approximation phase is
jointly performed with the update phase of the a posteriori
distribution [9], the generally inevitable error propagation
problem is terminated.

The remainder of this paper is organized as follows. In
Section 2, the system models are defined. The variational fil-
tering algorithm for CoSLAT in MANETS is described in de-
tailln Section 3. The performance of the proposed algorithm
is evaluated through the simulations in Section 4. Section 5
concludes this paper.
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Fig. 1: Example of a MANET with a target traveling through.

2. SYSTEM MODELS

In this study, we consider a MANET consisting of [N, mobile
sensors and a small subset of IV, anchor nodes (i.e., static
sensors with perfect location information), where one passive
target travels through, as depicted in Fig. 1. The mobile nodes
(including both the mobile sensors and the target to track) are
moving arbitrarily, where changes in direction and speed oc-
cur uncontrollably. A Random Walk Mobility (RWM) model
[10], which mimics an erratic movement of a mobile node in
extremely unpredictable situations, was employed in our sim-
ulations.

In order to minimize energy and bandwidth consumption,
the proposed algorithm is distributively executed on a cluster
base. Only the sensors that detect the target form an acti-
vated cluster to perform signal processing, as denoted by the
white disc with the center m? and the radius r, in Fig. 1. The
communication range is defined as twice of the sensing range
(ro = 2r4), which guarantees that one and only one cluster
is formed at each instant, and the communication in the acti-
vated cluster is within one-hop. The anchor node within the
activated cluster works as the cluster head (CH). In the case of
multiple anchors in a cluster, the one with the maximum resid-
ual energy is elected as the CH. The other slave sensors then
transfer their observations of the target (e.g. zf %) to the CH,
which are incorporated to update the target temporal estima-
tion. The inter-sensor observations (e.g. zf ’i) are combined
with the sensor-target observation to perform self-localization
algorithm in each slaver locally. For the sake of clarity, we in-
dex the mobile node by a superscript k, where 9 designates
the target, and :L'iC 70 denotes the mobile sensor node. Ac-
cording to the classical Bayesian filtering framework, the ob-
jective distribution of interest takes the form of a posteriori
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distribution p(x¥|2¥.,), which could be calculated by:

p(= |2y )p(ay |2ty 1)
p(zl‘{c |z{€:t—1)
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where p(zf]21, 1) =

pefleh ) = [ platlel p(at lsh ety @

In Eq. (1), an observation model p(zF|z¥) is incorporated
to update the prediction p(z¥|2z¥, ), in order to arrive at a
new and hopefully more accurate state estimate. The predic-
tion phase uses the state estimate from the previous sampling
instant, namely p(xF ,|z¥, ,), together with a state evolu-
tion model p(x¥|x¥ |) to produce a prediction p(zF|z¥, ;)
according to Eq. (2). Recursive computation of the two
equations allows online update of the mobile state estimation,
where the definitions of p(x¥|zf ;) and p(zF|xF) are of
great importances.

2.1. General State Evolution Model

Since the target and the mobile nodes travels arbitrarily in
the sensor field, we employ a General State Evolution Model
(GSEM). This model is more appropriate to practical non-
linear and non-Gaussian situations, with no a priort infor-
mation on the velocity or the acceleration. The temporal po-
sition mf is assumed to follow a Gaussian model, where the
expectation pF and the precision matrix )\f are both random.
The randomness of the expectation and the precision is used
here to further capture the uncertainty of the state distribu-
tion. A practical choice of these distributions is a Gaussian
distribution for the expectation p¥ and a Wishart distribution
for the precision matrix )\f. In other words, the hidden state
x! is extended to af = (a¥, ¥, A¥), yielding a hierarchical
model as follows,

xf o~ N(xF|pk )

Xk
1 N(pg|pg_ A7) 3)
AL Wa(AF[VE, 7k)

i

2

The denotation - represents the fixed hyper-parameter, where
X", 7 and V'* are the random walk precision matrix, the de-
grees of freedom and the precision of the Wishart distribution,
respectively. The dimension the Wishart distribution equals to
that of the mobile node state (d = 2), whereas an extension to
the 3D case is straightforward.

Assuming a random mean and a random covariance for
the state =¥ leads to a probability distribution covering a wide
range of tail behaviors, which allows discrete jumps in the
mobile node trajectory. The marginal state distribution is ob-
tained by integrating over the mean and precision matrix as
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follows,

bl ) = [ [ NGt Aok Al
@

2.2. Observation Model

Take the mobile sensor =}, (k # 0) for example, its obser-
vation of the mobile node x!, (i # k), which could be either
the target ( = 0) or other mobile sensor node (i # 0) , is
modeled as

if || :I:f —xf <7

i af =i |+,
¢ 0, otherwise

)
with e ~ N(0,02).

The measurement noise €, is assumed to be independent for

each detecting sensor zF.

3. PROPOSED METHOD

With the definition of the GSEM in the section 2.1 and the
observation model in the section 2.2, the inference problem
can be reduced to calculation of integrals in Eq. (1). How-
ever, the hidden state =¥ to be estimated is extended to ¥ by
the GSEM, resulting an augmented a posteriort distribution
p(af|zF,). In addition, the non-linear and non-Gaussian as-
pects in Eq. (3) lead to intractable integrals. Therefore, we
propose a Variational Filtering (VF) approach to approximate
p(ak|z¥,) by a separable distribution g(a¥), while minimiz-
ing the Kullback-Leibler (KL) divergence error:

q(c

Declall) = [ atadyion - U3 (ua),
plog|z1y)
where g(af) = q(@f)q(pf)a(Ar). (©6)
Accordingly p(af|2zF,)is deduced to,
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where q,(uf) =
With variational calculus, the following approximate distribu-
tion is yielded,

Q(mf) o exp(log p(zlftvat» (:)g(Ar)
q( i;) o exp(log p(z{“t,at»q(mn (Ar)
t

P ®)
q(AY) x exp(log p(Z{“:t,at»q(mt)q(ut)

where (-), denotes the expectation operator relative to the
distribution g. Therefore, through a simple integral with re-
spect to uf |, the a posteriori distribution p(af|zF,) can
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be sequentlally updated. Considering the Eq. (3), the evolu-
tion of p¥ is Gaussian, namely p(pf|uf ;) ~ N(uk_ 1,)\k).

Defining q(py_1) ~ N(piy, )‘ﬁl)’ gp(py) is also Gaus-
sian, with the following parameters,

N(pf, AF ) 9)

)

According to equation (8) and taking into account (7) and (9),
variational calculus leads to closed-form expressions of g(uf)
and g(AF):

qp(/”’f) ~

~1
k _ , kx k kx — k
where p/, =p"y and Ay, = (A

{q(uf) ~ N(pk ,Ak*)
a(Xf)  ~ Wa(VF k)

where the parameters are iteratively updated until conver-
gence, according to the following scheme:

pet = Af* (<>‘k><mt>+)‘tpﬂtp)
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(10)
The mean state and the precision matrix distributions q(ur)
and q()\,iC ) have closed forms, such that their expectations are
easily derived:

(i) = w0 ;
(Bfpf") = A+ pbrpbr an
<)\k> nk*‘/tk*

However, the state =¥ to be estimated does not have closed
form. Combining equations (7) and (8), q(x¥) has the fol-
lowing expressions:

a(@y) o N({uf), (AF)) exp(log p(zf|zr)).

Therefore, the GSEM and the observation model are natu-
rally incorporated to update g(x¥). The distribution form

immediately suggests an Importance Sampling procedure,
:(7)

(12)

where samples wf are drawn from the Gaussian distri-
bution N ((iF), (AF)), and are weighted according to their
likelihoods:

Ky
2y~ N (), (D), w Y o [ o).
ik
13)
The observation expectations relative to ¢(-) in (12), are ap-
proximated by the observation with respect to the particles,
when computing the particle weights. Accordingly, the ex-
pectation relative to g(x¥) is approximated by the Monte
Carlo method:

(14)

N . .
_ wa’(])wf’(]),
j=1
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Fig. 2: Graphical illustration of the VF algorithm for CoSLAT
in MANETs.

where N is the number of particles. Contrary to the tradi-
tional particle filtering (PF), the VF method reduces the tem-
poral dependence from a huge amount of particles to a single
Gaussian distribution q(uF_,). To estimate the temporal posi-
tions of the mobile nodes, new particles are generated at each
sampling instant, from the closed Gaussian distributions de-
duced from g(u¥ ;) using variational calculus; and then they
are sampled according to the temporal observations to cal-
culate the corresponding expectations. We can tell from the
procedure that the update phase and the approximation of the
a posteriori distribution p(af|2%,) are jointly performed in
the VF approach, yielding a natural and adaptive compres-
sion. Therefore, unlike other approximation method, e.g. the
GMM in [8], the accumulation of approximation errors has
been ended in the case of VF.

Besides the update of the a posteriori distribution in-
troduced above, the predictive distribution p(a|zF, ) can
also be efficiently calculated using the VF approach:

patizt, ) x [ plablal alal ol

o plxf|pl, XD)pA)gp(pf).  (15)

The exponential form solution, which minimizes the Kullback-

Leibler divergence between the predictive distribution and
the separable approximate distribution qt‘t_l(af), yields
Gaussian distributions for the predicted expectations, and a
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Fig. 3: Performance of the proposed algorithm after one trial.

Wishart distribution for the precision matrix:

Qt|t—1(wf) X N(<“?>Qt\t—}€7 <)‘i€>qut—1)
a1 (py) o N(pfy 1 Afji-1) ., (16)
Qt|t—1()\f) X Wd(Vk* o )

tlt—10 -1
where the parameters are updated according to the same iter-
ative schemes in Eq. (10) and (11). The state of the mobile
node is then predicted by the following expressions:

<mf>qt\t—l = <l’l'i€>qﬂt717 a7
T -1
<$i€w7]§C >Qz\r,71 <)‘f>‘h\t—1 + <IJ’?>Qt\t—1<IJ’?>£H71'

The computational cost and the memory requirements are dra-
matically reduced in the prediction phase compared to the
PF method, because the predictive expectations have closed
forms, avoiding the need of Monte Carlo integration.

Fig. 2 sums up the procedure of the VF algorithm for
CoSLAT in MANETS.

4. NUMERICAL EXAMPLE

We consider a network of N, = 4 anchors, N, = 40 mo-
bile sensors and one target moving freely within a field of
size 40 x 40 m? as depicted in Fig. 3. Each sensor nodes
has a sensing radius of ¢ = 15 m, and a communication
range of r. = 30 m. In the simulations, we assumed a lo-
cation prior that is uniform on the network field. However,
due to the deployment error, mobile sensors are normally dis-
tributed around their initially setting locations with identical
covariance matrix diag{1,1}. The mobile sensors and the
target evolve independently according to the RWM model
[10], as shown in Fig. 3. The observation noise variance is
02 = 0.01. The parameters involved in the GSEM were set
as A = diag{1/10,1/10}, V = diag{1/10,1/10}, n = 10.

Performance of the proposed algorithm using N = 100
particles is shown in Fig. 3 and evaluated by Root Mean
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Fig. 4: Sensor localization and target tracking errors.

Square Error (RMSE) in Fig. 4. The average target track-
ing error is 0.0552 m, and the average sensor localization
error is 0.6771 m against the initial deployment error of
1.3383 m. Therefore, in addition to the accurate tracking
performance, remarkable refinements for sensor localization
is demonstrated. However, since the algorithm is executed
on a cluster base for energy efficiency, only the sensors that
have detected the presence of the target are activated and
re-located, which leads to precise localization of the sensors
in high-traffic regions. On the contrary, sensors that are far
from the target trajectory are left un-refined, corresponding
to these unimproved localization errors in Fig. 4.

5. CONCLUSIONS

As the target moves freely in the MANET, a large number
of measurements are generated, which facilitates both the ac-
tivated sensors’ localization and the target tracking. A dis-
tributed VF solution for CoSLAT is proposed in the context
of MANETs, which interdependently and continuously im-
proves the estimates of the mobile sensors and that of the
target on-line, while reducing the resource consumption of
the network. The improvement lies in the following char-
acteristics: 1)the definition of the GSEM for the joint hid-
den state; 2) the variational calculus reduces the temporal
dependence to only one single Gaussian statistic, which out-
performs the classical PF algorithm in terms of inter-cluster
communication; and 3) the update and the approximation of
the a posteriori distribution are jointly performed, allow-
ing a lossless compression compared to other approximation
methods.
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