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ABSTRACT

In the field of automatic speech recognition (ASR), it is

common practice to augment features with time-derivatives,

which we call derivative-augmented features (DAF). Al-

though the method is effective for modeling the dynamic

behavior of features and produces significantly lower clas-

sification error, it violates the assumption of conditional

independence of the observations. The traditional approach

is to ignore the problem (simply apply the mathematical ap-

proach that assumes independence). In this paper, we take

an alternative approach in which we still use the same math-

ematical approach as before, but calculate a correction factor

by integrating out the redundant dimensions. This makes it

possible to compare and combine a DAF PDF and a non-DAF

PDF. We conduct experiments to demonstrate the usefulness

of the approach.

Index Terms— PDF estimation, feature derivatives,

HMM

1. INTRODUCTION

1.1. Background and Motivation

The hidden Markov model (HMM), although having many

benefits for modeling human speech, models the data using

discrete states. It can only model continuous feature varia-

tions using a large number of states. This problem is generally

solved by augmenting the features with time-derivatives [1].

Despite new probabilistic models that address the dynamic

behavior of features such as segmental HMMs [2], and a

wider class of graphical models [3], the derivative augmented

feature (DAF) combined with hidden Markov model (DAF-

HMM) remains the most widely-usedmethod of modeling the

dynamic behavior of features. Unfortunately, the DAF fea-

ture vector is of higher dimension with built-in redundancy.

As a result, the assumption of conditional independence of

the observations is violated. The probability density function

(PDF), or likelihood function (LF) of DAF cannot be com-

pared to the PDF of the original (un-augmented) features.

Being able to do this could enable new quantitative means

of evaluating dynamic models based on augmentation and

comparing with those not based on augmentation and allow

classifiers with “mixed” models, taking advantage of DAF

when necessary and using un-augmented features when not.

To this end, we derive an analytic expression for the inte-

gral of DAF-HMM model with respect to the un-differenced

input data, allowing it to be normalized so that it integrates

to one. The computational complexity of our method is order

O(MT )whereM is the number of Markov states and T is the

length of the feature stream. But, the correction term reaches

a steady-state at low values of T , allowing an efficient means

to compensate PDFs for large T .

2. MATHEMATICAL PRELIMINARIES

2.1. DAF

Consider the feature stream X = {x1,x2 . . .xT} , where

xt ∈ RD . For simplicity, we assume that the first derivatives

are obtained by the first-order difference: dt = xt−xt−1 and

define the DAF as

zt =

[

xt

dt

]

=

[

xt

xt − xt−1

]

.

Note that we are forced to eliminate one time step, thus Z =
{z2, z3 . . . zT}. For analysis, it is more convenient to work

with the equivalent history form of the DAF defined by Y =
{y2,y3 . . .yT}, where

yt =

[

xt−1

xt

]

. (1)

From a theoretical point of view, features yt and zt are equiv-

alent since we can obtain z from y by linear transformation

T with determinant 1.

2.2. DAF-HMM

The M -state HMM model parameters consist of Λ =
[{πm}, {Ai,j}, {bi(y)}] , where πm, 1 ≤ m ≤ M are

the prior probabilities, Ai,j , 1 ≤ i ≤ M, 1 ≤ j ≤ M
are the state transition probabilities, and bi(y), 1 ≤ i ≤ M
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are the state observation probability densities. The well-

known forward procedure [4] computes the likelihood func-

tion or joint probability density function (PDF) Ly(Y) =
p(y2,y3 . . .yT ;Λ). To convert Ly(Y) into a PDF on X,

we require the integral K =
∫

X
Ly(D(X)) dX, where

Y = D(X) is the DAF transformation that implements (1).

3. THE DAF INTEGRAL.

The desired integral is

KT =

∫

x1

· · ·

∫

xT

Ly(D(X)) dx1 dx2 · · · dxT . (2)

We first expand L(Y) =
∑

q∈Q p(q) L(Y|q). where

q is a particular length-T Markov state sequence q =
{i, j, k, l . . . p, q, r} with apriori probability

p(q) = πi Ai,j Aj,k · · · Ap,q Aq,r .

In what follows, the indexes {i, j, k, l . . . p, q, r} will always

stand for the assumed states at times 1, 2, 3, 4 . . . T − 2, T −
1, T }, respectively. Using conditional independence,

L(Y|q) = bi(y2) bj(y3) · · · bq(yT − 1) br(yT ). (3)

Thus, we have

L(Y) =

N
∑

i=1

N
∑

j=1

· · ·
N

∑

q=1

N
∑

r=1

πi Ai,j · · · Aq,r

·bi(y2) bj(y3) · · · bq(yT − 1) br(yT )

For tractability, we assume the state observation PDFs bk(y)
are Gaussian. This assumption does not limit this discussion

since an HMM with Gaussian mixture state PDFs can be rep-

resented as an HMM with Gaussian state PDFs by expand-

ing the individual mixture kernels as separate Markov states.

We assume a special form for the means and covariances of

bk(y):

µk =





µ
a
k

µ
b
k



 , Σk =





Σaa
k Σab

k

Σba
k Σbb

k



 , (4)

where superscripts a and b refer to the partitions of yt corre-

sponding to xt−1 and xt, respectively (thus, a,b are in order

of increasing time). Note that the marginal PDFs are easily

found, for example bb
k(x) has mean µ

b
k, and covarianceΣbb

k .
The only term in (3) that depends on x1 is bi(y2), which

integrated over x1 is

∫

x1

bi(y2) = bb
i(x2) dx1,

so
∫

x1

L(Y|q) = bb
i(x2) bj(y3) · · · bq(yT − 1) br(yT ). (5)

We now proceed to integrate (5) over x2. The only terms that

depend on x2 are bb
i(x2) and bj(y3). We have

∫

x1,x2

L(Y|q) =

{
∫

x2

bb
i(x2) bj(x2|x3) dx2

}

bb
j(x3)

·bk(y4) · · · br(yT ) =

∫

x2

N (x2 − µ
b
i ,Σ

bb
i ) bj(x2|x3)

dx2 bb
j(x3) bk(y4) · · · bq(yT − 1) br(yT )

(6)

Using (4) and standard identities for the conditional distribu-

tion,

bj(x2|x3) = N (x2 − µc(x3),Σc)

, where

µc(x3) = µ
a
j + Σab

j (Σbb
j )−1

(

x3 − µ
b
j

)

,

and

Σc = Σaa
j − Σab

j (Σbb
j )−1Σab′

j

. Then, using the standard identity for the product of two

Gaussians,

N (x2 − µ
b
i ,Σ

bb
i ) bj(x2|x3) = N (x2 − µ

d,Σd)

·N
(

µ
b
i − µc(x3),Σ

bb
i + Σc

)

where

Σd =
(

(Σbb
i )−1 + Σ−1

c

)−1
,

µ
d = Σd

(

(Σbb
i )−1

µ
b
i + Σ−1

c µc(x3)
)

Integrating over x2 leaves us with
∫

x2

bb
i(x2) bj(x2|x3) dx2 = N (x2 − µ

d,Σd)

·

∫

x2

N
(

µ
b
i − µc(x3),Σ

bb
i + Σc

)

= N
(

µ
b
i − µc(x3),Σ

bb
i + Σc

)

.

We can convert this into a density of x3 using the fact that for

any invertible matrix A,

N (x,Σ) =
N (A−1x,A−1ΣA−1′)

|det(A)|
(7)

Define Aj = Σab
j (Σbb

j )−1. We have

N
(

µ
b
i − µc(x3),Σ

bb
i + Σc

)

=

N(A−1
j (µb

i
−µ

c
(x3)),A

−1
j (Σbb

i +Σc)A
−1
j )

|det(Aj)|

=
N(A−1

j (µb
i
−µa

j
)−x3+µb

j
,A

−1
j (Σbb

i +Σaa
j )A−1

j −Σbb
j )

|det(Aj)| .
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So we have
∫

x1,x2

L(Y|q) = 1
|det(Aj)|

N
(

x3 − µ̂, Σ̂
)

·bb
j(x3) bk(y4) · · · bq(yT − 1) br(yT ),

(8)

where
µ̂ = µ

b
j + A−1

j (µb
i − µ

a
j ),

Σ̂ = A−1
j (Σbb

i + Σaa
j )A−1

j − Σbb
j .

(9)

We now proceed to integrate over x3. We re-write the product

N
(

x3 − µ̂, Σ̂
)

bb
j(x3) as

N
(

x3 − µ̂, Σ̂
)

N
(

x3 − µ
b
j ,Σ

bb
j

)

= N
(

µ̂ − µ
b
j , Σ̂ + Σbb

j

)

N
(

x3 − ˆ̂µ,
ˆ̂
Σ

)

,

where
ˆ̂
Σ =

[

Σ̂−1 + (Σbb
j )−1

]−1

,

ˆ̂µ =
ˆ̂
Σ

[

Σ̂−1
µ̂ + (Σbb

j )−1
µ

b
j

]

.
(10)

Collecting results and integrating over x3,

∫

x1,x2,x3

L(Y|q) =
N(µ̂−µb

j
,Σ̂+Σbb

j )
|det(Aj)|

·

∫

x3

{

N
(

x3 − ˆ̂µ,
ˆ̂
Σ

)

bk(y4)
}

bl(y5) · · · ,

=
N(µ̂−µb

j
,Σ̂+Σbb

j )
|det(Aj)|

·

∫

x3

{

N
(

x3 − ˆ̂µ,
ˆ̂
Σ

)

bk(x3|x4)
}

bb
k(x4) bl(y5) · · · ,

(11)

Define

Q(xt+1 . . .xT ; {j, k, l . . . p, q, r}, µ,Σ)
∆
=

∫

xt

{N (xt − µ,Σ) bj(xt|xt+1)} bb
j(xt+1) bk(yt+2)

· · · bq(yT−1) br(yT ),

then we may re-write (6) and (11) as

∫

x1,x2

L(Y|q) = Q(x3 . . .xT ; {j, k . . . p, q, r}, µb
i ,Σ

bb
i )

and
∫

x1,x2,x3

L(Y|q) =
N(µ̂−µb

j
,Σ̂+Σbb

j )
|det(Aj)|

Q(x4 . . .xT ; {k . . . p, q, r}, ˆ̂µ,
ˆ̂
Σ).

(12)

Comparing the above equations, we can see a recursion. Be-

cause we have previously identified indexes {i, j, k, l · · · p, q, r}
with fixed time indexes, to make a general expression for the

recursion, we need to define the free indexes m, n represent-

ing the assumed Markov states at the arbitrary times t,t + 1,
respectively. The recursion is

∫

xt+1

Q(xt . . .xT ; {m, n . . . p, q, r}, µ,Σ) =

N(µ̂−µb
m

,Σ̂+Σbb
m)

|det(Am)| Q(xt+1 . . .xT ; {n . . . p, q, r}, ˆ̂µ,
ˆ̂
Σ),

where
µ̂ = µ

b
m + A−1

m (µ − µ
a
m),

Σ̂ = A−1
m (Σ + Σaa

m )A−1
m − Σbb

m

(13)

and
ˆ̂
Σ =

[

Σ̂−1 + (Σbb
m)−1

]−1

,

ˆ̂µ =
ˆ̂
Σ

[

Σ̂−1
µ̂ + (Σbb

m)−1
µ

b
m

]

.
(14)

The recursion starts by integrating (12) over x4 and ends with

Q( , { }, µ,Σ)
∆
= 1. It can be seen that the full integral

K(q) =

∫

x1

∫

x2

· · ·

∫

xT

L(Y|q)

is obtained by the product

K(q) =
∏

m=j,k,...p,q,r

N
(

µ̂ − µ
b
m, Σ̂ + Σbb

m

)

|det(Am)|
. (15)

Finally, the desired integral (2) is given by

KT =
∑

q∈Q

p(q) K(q) (16)

Since there are MT elements in Q, the computation is of or-

der O(MT ), but the terms in (15) converge to a limiting dis-

tribution, since the ratio

Q(xt+1 . . .xT ; {j, k . . . n}, ˆ̂µ,
ˆ̂
Σ)

Q(xt . . .xT ; {i, j, k, l . . . p, q, r}, µ,Σ)
→ C

quickly converges to a constant C. This convergence is re-

lated to the property of limiting distributions for Markov

chains [5] and is fortunate because L(Y) needs only be cal-

culated for a few values of T , then the constant C stored.

We tested the expression for KT by comparing to the

numerically-integrated PDF. We created samples of X by

selecting the first D MFCC coeffients extracted from some

arbitrary samples of speech data and trained an HMM on

samples of Y. With HMM parameters held fixed, we eval-

uated Ly(D(X)) using the forward procedure on a fine grid

spanning the DT -dimensional space of X. In theory the
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D T Numerical result KT KT /KT − 1

1 2 0.999999 1.000000 1

1 3 0.412523 0.412307 0.412307

1 4 0.191555 0.191275 0.463914

1 5 0.092301 0.092048 0.481233

1 6 0.044915 0.487951

1 7 0.022039 0.490682

1 8 0.010839 0.491809

1 9 0.005335 0.492204

1 10 0.002628 0.492442

1 11 0.001294 0.492506

1 12 0.000637 0.492526

1 13 0.000314 0.492529

2 2 0.99999 1.000000 1

2 3 0.06426 0.063756

Table 1. Comparison of numerically integrated likelihood

function with equation (16) over feature dimension D and

length T . The number of Markov states was N = 2.

integral equals 1.0 for T = 2 since in this case, X and Y

are equivalent. For D = 1, we were able to carry out the

numerical integration up to T = 5. For D = 2, the numerical

integration could be carried out only up to T = 3. Table 1

shows the comparison of KT with numerical integration as

a function of T . Note the close agreement with KT from

equation (16). The accuracy was limited by the grid sampling

used in the numerical integration since it greatly affected the

computation time. The ratio KT /KT − 1 is shown to converge

quite rapidly. Therefore the values KT can be extrapolated to

much higher T with no additional calculations.

4. EXPERIMENTS

Now that we are able to correct the DAF-HMM likelihood

function so that it is a true PDF on the un-augmented features

X, we can make quantitative evaluation of the effects of fea-

ture augmentation.

4.1. Data sets

To illustrate the effect of feature augmentation, we chose two

data sets with different amount of dynamic information.

1. dyphthongs. This data set consisted of three dyphthongs

(phonemes with time-varying formants) from the TIMIT

corpus [6]. We extracted examples of the phonemes AY,

EY, and OW. An example of AY is shown in Figure 1

(left). The total number of samples were 3196 for “AY”,

3030 for “EY”, and 2858 for “OW”. We joined all avail-

able utterances of the phonemes from both the training

and testing subsets, then divided them into two sets for

2-fold holdout.

Fig. 1. Sample spectrograms. Left: dyphthong (AY). Right:

office sounds (penny). Note the gradually changing spectral

content of dyphthong “AY” in contrast to the abrupt character

of “penny”.

2. Office sounds. The Office Sounds database [7] contains

twenty-four signal classes of 102 samples each created by

dropping common objects or operating office tools such

as scissors or staplers. All time-series are 16128 samples

long (1/2 second in duration at 32000 Hz). We chose three

classes with abrupt temporal character: penny, quart, skit.

An example of “penny” is shown in Figure 1 (right).

4.2. Features

We extracted features by 2/3 overlapped hanning-weighted

MEL frequency cepstral coefficient (MFCC) feature analy-

sis [8]. For the TIMIT data, which is sampled at 16 KHz, we

first downsampled the data to 12 KHz, then used 288-sample

windows (24 milliseconds). For the office sounds data, which

is sampled at 32 KHz, we used 288-sample windows (18 mil-

liseconds). For both data sets, we used 24 Hanning-shaped

MEL bands (including the zero and Nyquist bands), and no

DCT truncation, producing a 24-dimensional feature.

4.3. PDF estimation

All PDFs were modeled as an HMM with Gaussian state

PDFs (single-component Gaussian mixture) in accordance

with the method of Rabiner [4]. We used M = 7 Markov

states for HMM. We used fewer Markov states (M = 5) for
DAF-HMM. These numbers were chosen by trial and error to

provide the best classification performance. It makes intuitive

sense also. The additional derivative information inherent

in DAF permits modeling dynamic behavior with fewer dis-

crete states. Also, the increased feature dimension of DAF

makes it wise to reduce the number of states, or risk over-

parameterization. Each PDF was estimated from training

data using five trials in which the initial parameters were ran-

domly initialized. The PDF parameters achieving the highest
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Fig. 2. Difference in µm for DAF-HMM-corrected and HMM

for Dyphthongs (left) and Office sounds (right).

log-likelihood after convergence was chosen.

4.4. Experimental Procedure

We evaluated both likelihood function types (a) straight

HMM on the un-augmented features, and (b) DAF-HMM

that had been corrected by KT , on each data set. For each

data set and likelihood function type, we measured mean

log-likelihood and classification error rate. Let

µm =
1

Nm

Nm
∑

k=1

log Lm(Xk)

Tk

,

where Lm(X) is a likelihood function for class m, Nm is the

number of testing samples for class m, and Tk is the length

of the feature stream for sample k. We only evaluated a like-

lihood function on data from it’s own class. We assume that

theNm testing samples have been separated from the training

data used to train Lm(X). To separate the data, we trained

on half of the available samples, then determined µm on the

other half. We then switched the halves and avaraged the re-

sults. We also evaluated the classification error rate in percent

for each likelihood function type, using the same data separa-

tion.

4.5. Results

Figure 2 shows the results of the mean log-likelihood exper-

iment. The vertical scale of the bar-graph equals µm(DAF ) −
µm(HMM). In the dyphthong data, the values are positive,

indicating that DAF-HMM produces a higher log-likelihood.

For office sounds data, DAF-HMM produces a lower log-

likelihood. This indicates that the spectral content of the

dyphthongs data was smoothly changing and feature time-

derivatives are more meaningful from a statistical modeling

point of view. For the abrupt sounds in the office sounds data,

the feature time difference were random and not predictable.

Thus, augmenting the features did more harm than good.

Below we list the results of the classification performance

experiment.

Classification Error (percent)

Dyphthongs Office Sounds

HMM DAF-HMM HMM DAF-HMM

9.6% 7.5% 0.66% 1.64%

The results are consistent with the mean log-likelihood exper-

iment. They indicate that augmenting the feature is helpful

for the Dyphthong data, but detrimental for the office sounds

data.

5. CONCLUSIONS

We have derived an expression for the integral of the DAF-

HMM likelihood function with respect to the un-augmented

features. This allows normalizing the DAF-HMM likelihood

function so that it can be compared with likelihood functions

based on the un-augmented features. We demonstrated the

use of the method on two data sets. In particular, we have

shown that appending feature time derivatives achieves lower

classification error as well as higher average log-likelihood

for data with slowly-varying spectral character. For data with

abrupt spectral character, the opposite was observed. This in-

dicates the possibility of a “litmus test” for the use of DAF.

It suggests the possibility of using DAF-HMM along with

HMM togeter in a single classifier.
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